def test_XGBoost(self): model=XGBClassifier() sk_model=iris_dataset(model) derived_col_names=['sepal_length','petal_length'] col_names=['sepal_length','petal_length'] target_name='species' mining_imp_value=() categoric_values=() self.assertEqual( len(xgb.get_segments_for_xgbc(sk_model,derived_col_names,col_names,target_name,mining_imp_value,categoric_values)), 4) self.assertEqual( xgb.get_segments_for_xgbc(sk_model,derived_col_names,col_names,target_name,mining_imp_value,categoric_values)[ 3].get_id(),4) self.assertEqual( xgb.get_segments_for_xgbc(sk_model, derived_col_names, col_names, target_name, mining_imp_value,categoric_values)[ 3].get_RegressionModel().get_RegressionTable()[0].get_intercept(), '0.0') self.assertEqual( xgb.mining_Field_For_First_Segment(col_names).__class__.__name__, pml.MiningSchema().__class__.__name__) self.assertEqual( xgb.mining_Field_For_First_Segment(col_names).get_MiningField()[0].get_name(), 'sepal_length') self.assertEqual(len(xgb.mining_Field_For_First_Segment(['a','b','d','e']).get_MiningField()) ,4) self.assertEqual( type(xgb.generate_Segments_Equal_To_Estimators([],derived_col_names,col_names)), type([])) self.assertEqual( xgb.add_segmentation(sk_model,[],[],pml.Output,1).__class__.__name__, pml.Segment().__class__.__name__) self.assertEqual( xgb.add_segmentation(sk_model,[],[],pml.Output,1).get_MiningModel().__class__.__name__, pml.MiningModel().__class__.__name__) self.assertEqual(xgb.add_segmentation(sk_model, [], [], pml.Output, 1).get_id(), 2) self.assertEqual(type(xgb.get_regrs_tabl(sk_model,col_names,'species',categoric_values)),type([]))
def test_LightGradientBoostingClassifier(self): model = LGBMClassifier() sk_model, feature_names, target_name = iris_dataset(model) derived_col_names = feature_names mining_imp_value = () categoric_values = () self.assertEqual( lgbToPmml.get_segments_for_lgbc( sk_model, derived_col_names, feature_names, target_name, mining_imp_value, categoric_values)[0].__class__.__name__, pml.Segment().__class__.__name__) self.assertEqual( lgbToPmml.get_segments_for_lgbc( sk_model, derived_col_names, feature_names, target_name, mining_imp_value, categoric_values)[-1].get_RegressionModel().__class__.__name__, pml.RegressionModel().__class__.__name__) self.assertEqual( len( lgbToPmml.get_segments_for_lgbc(sk_model, derived_col_names, feature_names, target_name, mining_imp_value, categoric_values)), sk_model.n_classes_ + 1) self.assertEqual( lgbToPmml.get_ensemble_models( sk_model, derived_col_names, feature_names, target_name, mining_imp_value, categoric_values)[0].get_functionName(), 'classification') self.assertEqual( len( lgbToPmml.get_ensemble_models( sk_model, derived_col_names, feature_names, target_name, mining_imp_value, categoric_values)[0].get_MiningSchema().get_MiningField()), model.n_features_ + 1)