def main(args=None): # parse arguments if args is None: args = sys.argv[1:] args = parse_args(args) if DEBUG_MODE: args.steps = 10 # create object that stores backbone information backbone = models.backbone(args.backbone) # make sure keras is the minimum required version check_keras_version() # optionally choose specific GPU use_cpu = False if args.gpu: gpu_num = args.gpu else: gpu_num = str(0) if use_cpu: os.environ["CUDA_VISIBLE_DEVICES"] = str(666) else: os.environ["CUDA_VISIBLE_DEVICES"] = gpu_num keras.backend.tensorflow_backend.set_session(get_session()) # Weights and logs saves in a new locations stmp = time.strftime("%c").replace(" ", "_") args.snapshot_path = os.path.join(args.snapshot_path, stmp) args.tensorboard_dir = os.path.join(args.tensorboard_dir, stmp) print("Weights will be saved in {}".format(args.snapshot_path)) print("Logs will be saved in {}".format(args.tensorboard_dir)) create_folder(args.snapshot_path) create_folder(args.tensorboard_dir) # create the generators train_generator, validation_generator = create_generators(args) print('train_size:{},val_size:{}'.format(train_generator.size(), validation_generator.size())) # create the model if args.snapshot is not None: print('Loading model, this may take a second...') model = models.load_model(args.snapshot, backbone_name=args.backbone) training_model = model prediction_model = retinanet_bbox(model=model) else: weights = os.path.join(os.path.join(root_dir(), args.weights)) # default to imagenet if nothing else is specified if weights is None and args.imagenet_weights: weights = backbone.download_imagenet() print('Creating model, this may take a second...') model, training_model, prediction_model = create_models( backbone_retinanet=backbone.retinanet, num_classes=train_generator.num_classes(), weights=weights, multi_gpu=args.multi_gpu, freeze_backbone=args.freeze_backbone) # print model summary # print(model.summary()) # this lets the generator compute backbone layer shapes using the actual backbone model if 'vgg' in args.backbone or 'densenet' in args.backbone: compute_anchor_targets = functools.partial( anchor_targets_bbox, shapes_callback=make_shapes_callback(model)) train_generator.compute_anchor_targets = compute_anchor_targets if validation_generator is not None: validation_generator.compute_anchor_targets = compute_anchor_targets # create the callbacks callbacks = create_callbacks( model, training_model, prediction_model, validation_generator, args, ) # start training training_model.fit_generator(generator=train_generator, steps_per_epoch=args.steps, epochs=args.epochs, verbose=1, callbacks=callbacks, validation_data=validation_generator, validation_steps=validation_generator.size())
def predict(generator, model, score_threshold=0.05, max_detections=9999, save_path=None, hard_score_rate=1.): all_detections = [[None for i in range(generator.num_classes())] for j in range(generator.size())] csv_data_lst = [] csv_data_lst.append( ['image_id', 'x1', 'y1', 'x2', 'y2', 'confidence', 'hard_score']) result_dir = os.path.join(root_dir(), 'results') create_folder(result_dir) timestamp = datetime.datetime.utcnow() res_file = result_dir + '/detections_output_iou_{}_{}.csv'.format( hard_score_rate, timestamp) for i in range(generator.size()): image_name = os.path.join( generator.image_path(i).split(os.path.sep)[-2], generator.image_path(i).split(os.path.sep)[-1]) raw_image = generator.load_image(i) image = generator.preprocess_image(raw_image.copy()) image, scale = generator.resize_image(image) # run network boxes, hard_scores, labels, soft_scores = model.predict_on_batch( np.expand_dims(image, axis=0)) soft_scores = np.squeeze(soft_scores, axis=-1) soft_scores = hard_score_rate * hard_scores + ( 1 - hard_score_rate) * soft_scores # correct boxes for image scale boxes /= scale # select indices which have a score above the threshold indices = np.where(hard_scores[0, :] > score_threshold)[0] # select those scores scores = soft_scores[0][indices] hard_scores = hard_scores[0][indices] # find the order with which to sort the scores scores_sort = np.argsort(-scores)[:max_detections] # select detections image_boxes = boxes[0, indices[scores_sort], :] image_scores = scores[scores_sort] image_hard_scores = hard_scores[scores_sort] image_labels = labels[0, indices[scores_sort]] image_detections = np.concatenate([ image_boxes, np.expand_dims(image_scores, axis=1), np.expand_dims(image_labels, axis=1) ], axis=1) results = np.concatenate([ image_boxes, np.expand_dims(image_scores, axis=1), np.expand_dims(image_hard_scores, axis=1), np.expand_dims(image_labels, axis=1) ], axis=1) filtered_data = EmMerger.merge_detections(image_name, results) filtered_boxes = [] filtered_scores = [] filtered_labels = [] for ind, detection in filtered_data.iterrows(): box = np.asarray([ detection['x1'], detection['y1'], detection['x2'], detection['y2'] ]) filtered_boxes.append(box) filtered_scores.append(detection['confidence']) filtered_labels.append('{0:.2f}'.format(detection['hard_score'])) row = [ image_name, detection['x1'], detection['y1'], detection['x2'], detection['y2'], detection['confidence'], detection['hard_score'] ] csv_data_lst.append(row) if save_path is not None: create_folder(save_path) draw_annotations(raw_image, generator.load_annotations(i), label_to_name=generator.label_to_name) draw_detections(raw_image, np.asarray(filtered_boxes), np.asarray(filtered_scores), np.asarray(filtered_labels), color=(0, 0, 255)) cv2.imwrite(os.path.join(save_path, '{}.png'.format(i)), raw_image) # copy detections to all_detections for label in range(generator.num_classes()): all_detections[i][label] = image_detections[ image_detections[:, -1] == label, :-1] print('{}/{}'.format(i + 1, generator.size()), end='\r') # Save annotations csv file with open(res_file, 'wb') as fl_csv: writer = csv.writer(fl_csv) writer.writerows(csv_data_lst) print("Saved output.csv file")