def _read_ndk(filename, *args, **kwargs): # @UnusedVariable """ Reads an NDK file to a :class:`~obspy.core.event.Catalog` object. :param filename: File or file-like object in text mode. """ # Read the whole file at once. While an iterator would be more efficient # the largest NDK file out in the wild is 13.7 MB so it does not matter # much. if not hasattr(filename, "read"): # Check if it exists, otherwise assume its a string. try: with open(filename, "rt") as fh: data = fh.read() except Exception: try: data = filename.decode() except Exception: data = str(filename) data = data.strip() else: data = filename.read() if hasattr(data, "decode"): data = data.decode() # Create iterator that yields lines. def lines_iter(): prev_line = -1 while True: next_line = data.find("\n", prev_line + 1) if next_line < 0: break yield data[prev_line + 1:next_line] prev_line = next_line if len(data) > prev_line + 1: yield data[prev_line + 1:] # Use one Flinn Engdahl object for all region determinations. fe = FlinnEngdahl() cat = Catalog(resource_id=_get_resource_id("catalog", str(uuid.uuid4()))) # Loop over 5 lines at once. for _i, lines in enumerate(zip_longest(*[lines_iter()] * 5)): if None in lines: msg = "Skipped last %i lines. Not a multiple of 5 lines." % ( lines.count(None)) warnings.warn(msg, ObsPyNDKWarning) continue # Parse the lines to a human readable dictionary. try: record = _read_lines(*lines) except (ValueError, ObsPyNDKException): exc = traceback.format_exc() msg = ("Could not parse event %i (faulty file?). Will be " "skipped. Lines of the event:\n" "\t%s\n" "%s") % (_i + 1, "\n\t".join(lines), exc) warnings.warn(msg, ObsPyNDKWarning) continue # Use one creation info for essentially every item. creation_info = CreationInfo(agency_id="GCMT", version=record["version_code"]) # Use the ObsPy Flinn Engdahl region determiner as the region in the # NDK files is oftentimes trimmed. region = fe.get_region(record["centroid_longitude"], record["centroid_latitude"]) # Create an event object. event = Event(force_resource_id=False, event_type="earthquake", event_type_certainty="known", event_descriptions=[ EventDescription(text=region, type="Flinn-Engdahl region"), EventDescription(text=record["cmt_event_name"], type="earthquake name") ]) # Assemble the time for the reference origin. try: time = _parse_date_time(record["date"], record["time"]) except ObsPyNDKException: msg = ("Invalid time in event %i. '%s' and '%s' cannot be " "assembled to a valid time. Event will be skipped.") % \ (_i + 1, record["date"], record["time"]) warnings.warn(msg, ObsPyNDKWarning) continue # Create two origins, one with the reference latitude/longitude and # one with the centroidal values. ref_origin = Origin( force_resource_id=False, time=time, longitude=record["hypo_lng"], latitude=record["hypo_lat"], # Convert to m. depth=record["hypo_depth_in_km"] * 1000.0, origin_type="hypocenter", comments=[ Comment(text="Hypocenter catalog: %s" % record["hypocenter_reference_catalog"], force_resource_id=False) ]) ref_origin.comments[0].resource_id = _get_resource_id( record["cmt_event_name"], "comment", tag="ref_origin") ref_origin.resource_id = _get_resource_id(record["cmt_event_name"], "origin", tag="reforigin") cmt_origin = Origin( force_resource_id=False, longitude=record["centroid_longitude"], longitude_errors={ "uncertainty": record["centroid_longitude_error"] }, latitude=record["centroid_latitude"], latitude_errors={"uncertainty": record["centroid_latitude_error"]}, # Convert to m. depth=record["centroid_depth_in_km"] * 1000.0, depth_errors={ "uncertainty": record["centroid_depth_in_km_error"] * 1000 }, time=ref_origin["time"] + record["centroid_time"], time_errors={"uncertainty": record["centroid_time_error"]}, depth_type=record["type_of_centroid_depth"], origin_type="centroid", time_fixed=False, epicenter_fixed=False, creation_info=creation_info.copy()) cmt_origin.resource_id = _get_resource_id(record["cmt_event_name"], "origin", tag="cmtorigin") event.origins = [ref_origin, cmt_origin] event.preferred_origin_id = cmt_origin.resource_id.id # Create the magnitude object. mag = Magnitude(force_resource_id=False, mag=round(record["Mw"], 2), magnitude_type="Mwc", origin_id=cmt_origin.resource_id, creation_info=creation_info.copy()) mag.resource_id = _get_resource_id(record["cmt_event_name"], "magnitude", tag="moment_mag") event.magnitudes = [mag] event.preferred_magnitude_id = mag.resource_id.id # Add the reported mb, MS magnitudes as additional magnitude objects. event.magnitudes.append( Magnitude( force_resource_id=False, mag=record["mb"], magnitude_type="mb", comments=[ Comment( force_resource_id=False, text="Reported magnitude in NDK file. Most likely 'mb'." ) ])) event.magnitudes[-1].comments[-1].resource_id = _get_resource_id( record["cmt_event_name"], "comment", tag="mb_magnitude") event.magnitudes[-1].resource_id = _get_resource_id( record["cmt_event_name"], "magnitude", tag="mb") event.magnitudes.append( Magnitude( force_resource_id=False, mag=record["MS"], magnitude_type="MS", comments=[ Comment( force_resource_id=False, text="Reported magnitude in NDK file. Most likely 'MS'." ) ])) event.magnitudes[-1].comments[-1].resource_id = _get_resource_id( record["cmt_event_name"], "comment", tag="MS_magnitude") event.magnitudes[-1].resource_id = _get_resource_id( record["cmt_event_name"], "magnitude", tag="MS") # Take care of the moment tensor. tensor = Tensor(m_rr=record["m_rr"], m_rr_errors={"uncertainty": record["m_rr_error"]}, m_pp=record["m_pp"], m_pp_errors={"uncertainty": record["m_pp_error"]}, m_tt=record["m_tt"], m_tt_errors={"uncertainty": record["m_tt_error"]}, m_rt=record["m_rt"], m_rt_errors={"uncertainty": record["m_rt_error"]}, m_rp=record["m_rp"], m_rp_errors={"uncertainty": record["m_rp_error"]}, m_tp=record["m_tp"], m_tp_errors={"uncertainty": record["m_tp_error"]}, creation_info=creation_info.copy()) mt = MomentTensor( force_resource_id=False, scalar_moment=record["scalar_moment"], tensor=tensor, data_used=[DataUsed(**i) for i in record["data_used"]], inversion_type=record["source_type"], source_time_function=SourceTimeFunction( type=record["moment_rate_type"], duration=record["moment_rate_duration"]), derived_origin_id=cmt_origin.resource_id, creation_info=creation_info.copy()) mt.resource_id = _get_resource_id(record["cmt_event_name"], "momenttensor") axis = [Axis(**i) for i in record["principal_axis"]] focmec = FocalMechanism( force_resource_id=False, moment_tensor=mt, principal_axes=PrincipalAxes( # The ordering is the same as for the IRIS SPUD service and # from a website of the Saint Louis University Earthquake # center so it should be correct. t_axis=axis[0], p_axis=axis[2], n_axis=axis[1]), nodal_planes=NodalPlanes( nodal_plane_1=NodalPlane(**record["nodal_plane_1"]), nodal_plane_2=NodalPlane(**record["nodal_plane_2"])), comments=[ Comment(force_resource_id=False, text="CMT Analysis Type: %s" % record["cmt_type"].capitalize()), Comment(force_resource_id=False, text="CMT Timestamp: %s" % record["cmt_timestamp"]) ], creation_info=creation_info.copy()) focmec.comments[0].resource_id = _get_resource_id( record["cmt_event_name"], "comment", tag="cmt_type") focmec.comments[1].resource_id = _get_resource_id( record["cmt_event_name"], "comment", tag="cmt_timestamp") focmec.resource_id = _get_resource_id(record["cmt_event_name"], "focal_mechanism") event.focal_mechanisms = [focmec] event.preferred_focal_mechanism_id = focmec.resource_id.id # Set at end to avoid duplicate resource id warning. event.resource_id = _get_resource_id(record["cmt_event_name"], "event") cat.append(event) if len(cat) == 0: msg = "No valid events found in NDK file." raise ObsPyNDKException(msg) return cat
def _internal_read_single_scardec(buf): """ Reads a single SCARDEC file to a :class:`~obspy.core.event.Catalog` object. :param buf: File to read. :type buf: open file or file-like object """ # The first line encodes the origin time and epicenter line = buf.readline() origin_time = line.strip().split()[:6] values = list(map(int, origin_time[:-1])) + \ [float(origin_time[-1])] try: origin_time = UTCDateTime(*values) except (TypeError, ValueError): warnings.warn("Could not determine origin time from line: %s. Will " "be set to zero." % line) origin_time = UTCDateTime(0) line = line.split()[6:] latitude, longitude = map(float, line[:2]) # The second line encodes depth and the two focal mechanisms line = buf.readline() line = line.split() # First three values are depth, scalar moment (in Nm) and moment magnitude depth, scalar_moment, moment_mag = map(float, line[0:3]) # depth is in km in SCARDEC files depth *= 1e3 # Next six values are strike, dip, rake for both planes strike1, dip1, rake1 = map(float, line[3:6]) strike2, dip2, rake2 = map(float, line[6:9]) # The rest of the file is the moment rate function # In each line: time (sec), moment rate (Nm/sec) stf_time = [] stf_mr = [] for line in buf: stf_time.append(float(line.split()[0])) stf_mr.append(float(line.split()[1])) # Normalize the source time function stf_mr = np.array(stf_mr) stf_mr /= scalar_moment # Calculate the time step dt = np.mean(np.diff(stf_time)) # Calculate the stf offset (time of first sample wrt to origin time) offset = stf_time[0] # event name is set to generic value for now event_name = 'SCARDEC_event' cmt_origin = Origin(resource_id=_get_resource_id(event_name, "origin", tag="cmt"), time=origin_time, longitude=longitude, latitude=latitude, depth=depth, origin_type="centroid", region=_fe.get_region(longitude=longitude, latitude=latitude)) cmt_mag = Magnitude(resource_id=_get_resource_id(event_name, "magnitude", tag="mw"), mag=moment_mag, magnitude_type="mw", origin_id=cmt_origin.resource_id) nod1 = NodalPlane(strike=strike1, dip=dip1, rake=rake1) nod2 = NodalPlane(strike=strike2, dip=dip2, rake=rake2) nod = NodalPlanes(nodal_plane_1=nod1, nodal_plane_2=nod2) foc_mec = FocalMechanism(resource_id=_get_resource_id( event_name, "focal_mechanism"), nodal_planes=nod) dip1 *= np.pi / 180. rake1 *= np.pi / 180. strike1 *= np.pi / 180. mxx = -scalar_moment * ( (np.sin(dip1) * np.cos(rake1) * np.sin(2 * strike1)) + (np.sin(2 * dip1) * np.sin(rake1) * np.sin(2 * strike1))) mxy = scalar_moment * ( (np.sin(dip1) * np.cos(rake1) * np.cos(2 * strike1)) + (np.sin(2 * dip1) * np.sin(rake1) * np.sin(2 * strike1) * 0.5)) myy = scalar_moment * ( (np.sin(dip1) * np.cos(rake1) * np.sin(2 * strike1)) - (np.sin(2 * dip1) * np.sin(rake1) * np.cos(2 * strike1))) mxz = -scalar_moment * ( (np.cos(dip1) * np.cos(rake1) * np.cos(strike1)) + (np.cos(2 * dip1) * np.sin(rake1) * np.sin(strike1))) myz = -scalar_moment * ( (np.cos(dip1) * np.cos(rake1) * np.sin(strike1)) - (np.cos(2 * dip1) * np.sin(rake1) * np.cos(strike1))) mzz = scalar_moment * (np.sin(2 * dip1) * np.sin(rake1)) tensor = Tensor(m_rr=mxx, m_tt=myy, m_pp=mzz, m_rt=mxy, m_rp=mxz, m_tp=myz) cm = [ Comment(text="Basis system: North,East,Down \ (Jost and Herrmann 1989)") ] cm[0].resource_id = _get_resource_id(event_name, 'comment', 'mt') cm.append( Comment(text="MT derived from focal mechanism, therefore \ constrained to pure double couple.", force_resource_id=False)) # Write moment rate function extra = { 'moment_rate': { 'value': stf_mr, 'namespace': r"http://test.org/xmlns/0.1" }, 'dt': { 'value': dt, 'namespace': r"http://test.org/xmlns/0.1" }, 'offset': { 'value': offset, 'namespace': r"http://test.org/xmlns/0.1" } } # Source time function stf = SourceTimeFunction(type="unknown") stf.extra = extra mt = MomentTensor(resource_id=_get_resource_id(event_name, "moment_tensor"), derived_origin_id=cmt_origin.resource_id, moment_magnitude_id=cmt_mag.resource_id, scalar_moment=scalar_moment, tensor=tensor, source_time_function=stf, comments=cm) # Assemble everything. foc_mec.moment_tensor = mt ev = Event(resource_id=_get_resource_id(event_name, "event"), event_type="earthquake") ev.event_descriptions.append( EventDescription(text=event_name, type="earthquake name")) ev.comments.append( Comment(text="Hypocenter catalog: SCARDEC", force_resource_id=False)) ev.origins.append(cmt_origin) ev.magnitudes.append(cmt_mag) ev.focal_mechanisms.append(foc_mec) # Set the preferred items. ev.preferred_origin_id = cmt_origin.resource_id.id ev.preferred_magnitude_id = cmt_mag.resource_id.id ev.preferred_focal_mechanism_id = foc_mec.resource_id.id ev.scope_resource_ids() return ev
def _internal_read_single_cmtsolution(buf): """ Reads a single CMTSOLUTION file to a :class:`~obspy.core.event.Catalog` object. :param buf: File to read. :type buf: open file or file-like object """ # The first line encodes the preliminary epicenter. line = buf.readline() hypocenter_catalog = line[:5].strip().decode() origin_time = line[5:].strip().split()[:6] values = list(map(int, origin_time[:-1])) + \ [float(origin_time[-1])] try: origin_time = UTCDateTime(*values) except (TypeError, ValueError): warnings.warn("Could not determine origin time from line: %s. Will " "be set to zero." % line) origin_time = UTCDateTime(0) line = line[28:].split() latitude, longitude, depth, body_wave_mag, surface_wave_mag = \ map(float, line[:5]) # The rest encodes the centroid solution. event_name = buf.readline().strip().split()[-1].decode() preliminary_origin = Origin( resource_id=_get_resource_id(event_name, "origin", tag="prelim"), time=origin_time, longitude=longitude, latitude=latitude, # Depth is in meters. depth=depth * 1000.0, origin_type="hypocenter", region=_fe.get_region(longitude=longitude, latitude=latitude), evaluation_status="preliminary") preliminary_bw_magnitude = Magnitude( resource_id=_get_resource_id(event_name, "magnitude", tag="prelim_bw"), mag=body_wave_mag, magnitude_type="Mb", evaluation_status="preliminary", origin_id=preliminary_origin.resource_id) preliminary_sw_magnitude = Magnitude( resource_id=_get_resource_id(event_name, "magnitude", tag="prelim_sw"), mag=surface_wave_mag, magnitude_type="MS", evaluation_status="preliminary", origin_id=preliminary_origin.resource_id) values = [ "time_shift", "half_duration", "latitude", "longitude", "depth", "m_rr", "m_tt", "m_pp", "m_rt", "m_rp", "m_tp" ] cmt_values = { _i: float(buf.readline().strip().split()[-1]) for _i in values } # Moment magnitude calculation in dyne * cm. m_0 = 1.0 / math.sqrt(2.0) * math.sqrt( cmt_values["m_rr"]**2 + cmt_values["m_tt"]**2 + cmt_values["m_pp"]**2 + 2.0 * cmt_values["m_rt"]**2 + 2.0 * cmt_values["m_rp"]**2 + 2.0 * cmt_values["m_tp"]**2) m_w = 2.0 / 3.0 * (math.log10(m_0) - 16.1) # Convert to meters. cmt_values["depth"] *= 1000.0 # Convert to Newton meter. values = ["m_rr", "m_tt", "m_pp", "m_rt", "m_rp", "m_tp"] for value in values: cmt_values[value] /= 1E7 cmt_origin = Origin( resource_id=_get_resource_id(event_name, "origin", tag="cmt"), time=origin_time + cmt_values["time_shift"], longitude=cmt_values["longitude"], latitude=cmt_values["latitude"], depth=cmt_values["depth"], origin_type="centroid", # Could rarely be different than the epicentral region. region=_fe.get_region(longitude=cmt_values["longitude"], latitude=cmt_values["latitude"]) # No evaluation status as it could be any of several and the file # format does not provide that information. ) cmt_mag = Magnitude( resource_id=_get_resource_id(event_name, "magnitude", tag="mw"), # Round to 2 digits. mag=round(m_w, 2), magnitude_type="mw", origin_id=cmt_origin.resource_id) foc_mec = FocalMechanism( resource_id=_get_resource_id(event_name, "focal_mechanism"), # The preliminary origin most likely triggered the focal mechanism # determination. triggering_origin_id=preliminary_origin.resource_id) tensor = Tensor(m_rr=cmt_values["m_rr"], m_pp=cmt_values["m_pp"], m_tt=cmt_values["m_tt"], m_rt=cmt_values["m_rt"], m_rp=cmt_values["m_rp"], m_tp=cmt_values["m_tp"]) # Source time function is a triangle, according to the SPECFEM manual. stf = SourceTimeFunction( type="triangle", # The duration is twice the half duration. duration=2.0 * cmt_values["half_duration"]) mt = MomentTensor( resource_id=_get_resource_id(event_name, "moment_tensor"), derived_origin_id=cmt_origin.resource_id, moment_magnitude_id=cmt_mag.resource_id, # Convert to Nm. scalar_moment=m_0 / 1E7, tensor=tensor, source_time_function=stf) # Assemble everything. foc_mec.moment_tensor = mt ev = Event(resource_id=_get_resource_id(event_name, "event"), event_type="earthquake") ev.event_descriptions.append( EventDescription(text=event_name, type="earthquake name")) ev.comments.append( Comment(text="Hypocenter catalog: %s" % hypocenter_catalog, force_resource_id=False)) ev.origins.append(cmt_origin) ev.origins.append(preliminary_origin) ev.magnitudes.append(cmt_mag) ev.magnitudes.append(preliminary_bw_magnitude) ev.magnitudes.append(preliminary_sw_magnitude) ev.focal_mechanisms.append(foc_mec) # Set the preferred items. ev.preferred_origin_id = cmt_origin.resource_id.id ev.preferred_magnitude_id = cmt_mag.resource_id.id ev.preferred_focal_mechanism_id = foc_mec.resource_id.id ev.scope_resource_ids() return ev
def _internal_read_single_scardec(buf): """ Reads a single SCARDEC file to a :class:`~obspy.core.event.Catalog` object. :param buf: File to read. :type buf: Open file or open file like object. """ # The first line encodes the origin time and epicenter line = buf.readline() origin_time = line.strip().split()[:6] values = list(map(int, origin_time[:-1])) + \ [float(origin_time[-1])] try: origin_time = UTCDateTime(*values) except (TypeError, ValueError): warnings.warn("Could not determine origin time from line: %s. Will " "be set to zero." % line) origin_time = UTCDateTime(0) line = line.split()[6:] latitude, longitude = map(float, line[:2]) # The second line encodes depth and the two focal mechanisms line = buf.readline() line = line.split() # First three values are depth, scalar moment (in Nm) and moment magnitude depth, scalar_moment, moment_mag = map(float, line[0:3]) # depth is in km in SCARDEC files depth *= 1e3 # Next six values are strike, dip, rake for both planes strike1, dip1, rake1 = map(float, line[3:6]) strike2, dip2, rake2 = map(float, line[6:9]) # The rest of the file is the moment rate function # In each line: time (sec), moment rate (Nm/sec) stf_time = [] stf_mr = [] for line in buf: stf_time.append(float(line.split()[0])) stf_mr.append(float(line.split()[1])) # Normalize the source time function stf_mr = np.array(stf_mr) stf_mr /= scalar_moment # Calculate the time step dt = np.mean(np.diff(stf_time)) # Calculate the stf offset (time of first sample wrt to origin time) offset = stf_time[0] # event name is set to generic value for now event_name = 'SCARDEC_event' cmt_origin = Origin( resource_id=_get_resource_id(event_name, "origin", tag="cmt"), time=origin_time, longitude=longitude, latitude=latitude, depth=depth, origin_type="centroid", region=_fe.get_region(longitude=longitude, latitude=latitude) ) cmt_mag = Magnitude( resource_id=_get_resource_id(event_name, "magnitude", tag="mw"), mag=moment_mag, magnitude_type="mw", origin_id=cmt_origin.resource_id ) nod1 = NodalPlane(strike=strike1, dip=dip1, rake=rake1) nod2 = NodalPlane(strike=strike2, dip=dip2, rake=rake2) nod = NodalPlanes(nodal_plane_1=nod1, nodal_plane_2=nod2) foc_mec = FocalMechanism( resource_id=_get_resource_id(event_name, "focal_mechanism"), nodal_planes=nod ) dip1 *= np.pi / 180. rake1 *= np.pi / 180. strike1 *= np.pi / 180. mxx = - scalar_moment * ((np.sin(dip1) * np.cos(rake1) * np.sin(2 * strike1)) + (np.sin(2 * dip1) * np.sin(rake1) * np.sin(2 * strike1))) mxy = scalar_moment * ((np.sin(dip1) * np.cos(rake1) * np.cos(2 * strike1)) + (np.sin(2 * dip1) * np.sin(rake1) * np.sin(2 * strike1) * 0.5)) myy = scalar_moment * ((np.sin(dip1) * np.cos(rake1) * np.sin(2 * strike1)) - (np.sin(2 * dip1) * np.sin(rake1) * np.cos(2 * strike1))) mxz = - scalar_moment * ((np.cos(dip1) * np.cos(rake1) * np.cos(strike1)) + (np.cos(2 * dip1) * np.sin(rake1) * np.sin(strike1))) myz = - scalar_moment * ((np.cos(dip1) * np.cos(rake1) * np.sin(strike1)) - (np.cos(2 * dip1) * np.sin(rake1) * np.cos(strike1))) mzz = scalar_moment * (np.sin(2 * dip1) * np.sin(rake1)) tensor = Tensor(m_rr=mxx, m_tt=myy, m_pp=mzz, m_rt=mxy, m_rp=mxz, m_tp=myz) cm = [Comment(text="Basis system: North,East,Down \ (Jost and Herrmann 1989)")] cm[0].resource_id = _get_resource_id(event_name, 'comment', 'mt') cm.append(Comment(text="MT derived from focal mechanism, therefore \ constrained to pure double couple.", force_resource_id=False)) # Write moment rate function extra = {'moment_rate': {'value': stf_mr, 'namespace': r"http://test.org/xmlns/0.1"}, 'dt': {'value': dt, 'namespace': r"http://test.org/xmlns/0.1"}, 'offset': {'value': offset, 'namespace': r"http://test.org/xmlns/0.1"} } # Source time function stf = SourceTimeFunction(type="unknown") stf.extra = extra mt = MomentTensor( resource_id=_get_resource_id(event_name, "moment_tensor"), derived_origin_id=cmt_origin.resource_id, moment_magnitude_id=cmt_mag.resource_id, scalar_moment=scalar_moment, tensor=tensor, source_time_function=stf, comments=cm ) # Assemble everything. foc_mec.moment_tensor = mt ev = Event(resource_id=_get_resource_id(event_name, "event"), event_type="earthquake") ev.event_descriptions.append(EventDescription(text=event_name, type="earthquake name")) ev.comments.append(Comment( text="Hypocenter catalog: SCARDEC", force_resource_id=False)) ev.origins.append(cmt_origin) ev.magnitudes.append(cmt_mag) ev.focal_mechanisms.append(foc_mec) # Set the preferred items. ev.preferred_origin_id = cmt_origin.resource_id.id ev.preferred_magnitude_id = cmt_mag.resource_id.id ev.preferred_focal_mechanism_id = foc_mec.resource_id.id return ev