def text_line_segmentation(binary, scale=None, gray=None, num_col = 1): """Given a binary image, compute a complete segmentation into lines, computing both columns and text lines.""" binary = array(binary, 'B') if scale is None: scale = psegutils.estimate_scale(binary) # do the column finding if num_col > 1: colseps, binary = compute_colseps(binary, scale) else: colseps = np.zeros(binary.shape) # now compute the text line seeds bottom, top, boxmap = compute_gradmaps(binary, scale) seeds = compute_line_seeds(binary, bottom, top, colseps, scale) # spread the text line seeds to all the remaining components llabels = morph.propagate_labels(boxmap, seeds, conflict=0) spread = morph.spread_labels(seeds, maxdist=scale) llabels = where(llabels > 0, llabels, spread * binary) segmentation = llabels * binary lines = psegutils.compute_lines(segmentation, scale, 0.8) line_ims = [] for l in lines: if gray is None: binline = psegutils.extract_masked(1-binary, l, pad=0) else: binline = psegutils.extract_masked(gray, l, pad=0) binline = pad_by(binline, 10, invert=False) line_ims.append(binline) return line_ims, lines
def extract(image): try: binary = ocrolib.read_image_binary(image) binary = 1-binary scale = psegutils.estimate_scale(binary) segmentation = compute_segmentation(binary,scale) # ...lines = compute_lines(segmentation,scale) # compute the reading order lines = psegutils.compute_lines(segmentation,scale) order = psegutils.reading_order([l.bounds for l in lines]) lsort = psegutils.topsort(order) # renumber the labels so that they conform to the specs nlabels = amax(compute_segmentation)+1 renumber = zeros(nlabels,'i') for i,v in enumerate(lsort): renumber[lines[v].label] = 0x010000+(i+1) segmentation = renumber[segmentation] outputdir = "http://127.0.0.1:5000/uploads/" lines = [lines[i] for i in lsort] ocrolib.write_page_segmentation("%s.pseg.png"%outputdir,segmentation) cleaned = ocrolib.remove_noise(binary,args.noise) for i,l in enumerate(lines): binline = psegutils.extract_masked(1-cleaned,l,pad=args.pad,expand=args.expand) ocrolib.write_image_binary("%s/01%04x.bin.png"%(outputdir,i+1),binline) #print "%6d"%i,fname,"%4.1f"%scale,len(lines) except: print ('error')
def calc(self, objects, scale): if self.binpage is None: return tt = time() bottom, top, boxmap = compute_gradmaps(self.binpage, scale) # DSHOW('hihi', [0.5*bottom+0.5*top,self.binpage, boxmap]) seeds0 = compute_line_seeds(self.binpage, bottom, top, scale) seeds, _ = morph.label(seeds0) llabels = morph.propagate_labels(boxmap, seeds, conflict=0) spread = spread_labels(seeds, maxdist=scale) llabels = where(llabels > 0, llabels, spread * self.binpage) segmentation = llabels * self.binpage self.binpage = ocrolib.remove_noise(self.binpage, args.noise) lines = psegutils.compute_lines(segmentation, scale) binpage_reversed = 1 - self.binpage # print 'pre line ', time() - tt tt = time() self.lines = [] for i, l in enumerate(lines): tt = time() binline = psegutils.extract_masked( binpage_reversed, l, pad=args.pad, expand=args.expand) # black text binline = (1 - binline) le = lineest.CenterNormalizer(binline.shape[0]) # white text binline = binline.astype(float) le.measure(binline) binline = le.normalize(binline) binline = where(binline > 0.5, 0, 1) # black text # print 'line time ', time()-tt print '-----------------------' pilimg = Image.fromarray((binline * 255).astype(uint8)) pred_legacy = pytesseract.image_to_string(pilimg, lang='eng', config='--oem 0 --psm 7') print '00', pred_legacy pred_lstm = pytesseract.image_to_string(pilimg, lang='eng', config='--oem 1 --psm 7') print '11', pred_lstm # ASHOW('line',binline, scale=2.0) ## pred_both = pytesseract.image_to_string(pilimg,lang='vie', config='--oem 2 --psm 7') ## print '22', pred_both result = psegutils.record(bounds=l.bounds, text1=pred_legacy, text2=pred_lstm, img=binline) self.lines.append(result)
def printResult(self, outputfile): # Some pre-process # print 'text area before' # cv2.imshow('patch', self.patch) # cv2.waitKey(-1) if self.name == 'CMND cu - 9 so': k = 0.45 else: k = 0.33 patch = sharpen(self.patch) binary = sauvola(patch, w=int(self.template.shape[1] / 24.5 * 2), k=k, scaledown=0.5, reverse=True) binary = cv2.bitwise_and(binary, binary, mask=self.patch_mask) # print 'text area after' # cv2.imshow('patch', binary*255) # cv2.waitKey(-1) dotremoved = binary scale = self.scale # Line extraction copied from Ocropus source code bottom, top, boxmap = compute_gradmaps(dotremoved, scale) seeds0 = compute_line_seeds(dotremoved, bottom, top, scale) seeds, _ = morph.label(seeds0) llabels = morph.propagate_labels(boxmap, seeds, conflict=0) spread = spread_labels(seeds, maxdist=scale) llabels = where(llabels > 0, llabels, spread * dotremoved) segmentation = llabels * dotremoved dotremoved = ocrolib.remove_noise(dotremoved, 8) lines = psegutils.compute_lines(segmentation, scale / 2) binpage_reversed = 1 - dotremoved self.lines = [] readrs = dict.fromkeys(self.linepos1.keys(), u'') lines = sorted(lines, key=lambda x: x.bounds[1].start) for i, l in enumerate(lines): # Line extraction copied from Ocropus source code binline = psegutils.extract_masked(binpage_reversed, l, pad=int(scale / 2), expand=0) # black text binline = (1 - binline) le = lineest.CenterNormalizer(binline.shape[0]) # white text binline = binline.astype(float) le.measure(binline) binline = le.normalize(binline) # print 'normalized' # cv2.imshow('line', binline) # cv2.waitKey(-1) binline = cv2.resize(binline, None, fx=2.0, fy=2.0) # print 'resized' # cv2.imshow('line', binline) # cv2.waitKey(-1) binline = where(binline > 0.5, uint8(0), uint8(255)) # black text # print 'black text' # cv2.imshow('line', binline) # cv2.waitKey(-1) # pilimg = Image.fromarray(binline) pos = l.bounds[0].stop left = (l.bounds[1].start < self.template.shape[1] / 2) # Prediction using Tesseract 4.0 if pos > self.linepos1['idNumber'][0] and pos < self.linepos1[ 'idNumber'][1]: #ID, all numbers pred = ocr( binline, config= '--oem 0 --psm 7 -c tessedit_char_whitelist=0123456789') readrs['idNumber'] += pred + u' ' elif pos > self.linepos1['dateOfBirth'][0] and pos < self.linepos1[ 'dateOfBirth'][1]: # DOB, number, - , / pred = ocr( binline, config= '--oem 1 --psm 7 -c tessedit_char_whitelist=0123456789-/') readrs['dateOfBirth'] += pred + u' ' elif left and pos > self.linepos1['Gender'][ 0] and pos < self.linepos1['Gender'][1]: pred = ocr(binline, config='--oem 1 --psm 7 -l vie') readrs['Gender'] += pred + u' ' elif (not left) and pos > self.linepos1['Dantoc'][ 0] and pos < self.linepos1['Dantoc'][1]: pred = ocr(binline, config='--oem 1 --psm 7 -l vie') readrs['Dantoc'] += pred + u' ' elif pos > self.linepos1['NguyenQuan'][0] and pos < self.linepos1[ 'NguyenQuan'][1]: pred = ocr(binline, config='--oem 1 --psm 7 -l vie') readrs['NguyenQuan'] += pred + u' ' elif pos > self.linepos1['fullName'][0] and pos < self.linepos1[ 'fullName'][1]: pred = ocr(binline, config='--oem 1 --psm 7 -l vie') readrs['fullName'] += pred + u' ' # else: # pred = ocr(binline, config='--oem 1 --psm 7 -l vie') # print 'unknown ', unicode2ascii(pred), 'y:', l.bounds[0], 'x:', l.bounds[1] for k in readrs: readrs[k] = (readrs[k].replace(u'²', u'2').replace(u'º', u'o').replace( u'»', u'-')).strip() if len(readrs[k]) == 0: readrs[k] = None if self.name == 'CMND moi - 12 so': readrs['type'] = 'CMND Mới - 12 Số' elif self.name == 'Can Cuoc Cong Dan': readrs['type'] = 'Căn Cước Công Dân' elif self.name == 'CMND cu - 9 so': readrs['type'] = 'CMND Cũ - 9 Số' readrs['NgayHetHan'] = None outputfile.write(json.dumps(readrs))
def _process_segment(self, page_image, page, textregion, region_xywh, page_id, input_file, n): LOG = getLogger('OcrdAnybaseocrTextline') #check for existing text lines and whether to overwrite them if textregion.get_TextLine(): if self.parameter['overwrite']: LOG.info('removing existing TextLines in region "%s"', page_id) textregion.set_TextLine([]) else: LOG.warning('keeping existing TextLines in region "%s"', page_id) return binary = ocrolib.pil2array(page_image) if len(binary.shape) > 2: binary = np.mean(binary, 2) binary = np.array(1 - binary / np.amax(binary), 'B') if self.parameter['scale'] == 0: scale = psegutils.estimate_scale(binary) else: scale = self.parameter['scale'] if np.isnan( scale) or scale > 1000.0 or scale < self.parameter['minscale']: LOG.warning(str(scale) + ": bad scale; skipping!\n") return segmentation = self.compute_segmentation(binary, scale) if np.amax(segmentation) > self.parameter['maxlines']: LOG.warning("too many lines %i; skipping!\n", (np.amax(segmentation))) return lines = psegutils.compute_lines(segmentation, scale) order = psegutils.reading_order([l.bounds for l in lines]) lsort = psegutils.topsort(order) # renumber the labels so that they conform to the specs nlabels = np.amax(segmentation) + 1 renumber = np.zeros(nlabels, 'i') for i, v in enumerate(lsort): renumber[lines[v].label] = 0x010000 + (i + 1) segmentation = renumber[segmentation] lines = [lines[i] for i in lsort] cleaned = ocrolib.remove_noise(binary, self.parameter['noise']) for i, l in enumerate(lines): #LOG.info('check this: ') #LOG.info(type(l.bounds)) #LOG.info(l.bounds) #line_points = np.where(l.mask==1) #hull = MultiPoint([x for x in zip(line_points[0],line_points[1])]).convex_hull #x,y = hull.exterior.coords.xy #LOG.info('hull coords x: ',x) #LOG.info('hull coords y: ',y) min_x, max_x = (l.bounds[0].start, l.bounds[0].stop) min_y, max_y = (l.bounds[1].start, l.bounds[1].stop) line_polygon = [[min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y]] #line_polygon = [x for x in zip(y, x)] line_polygon = coordinates_for_segment(line_polygon, page_image, region_xywh) line_points = points_from_polygon(line_polygon) img = cleaned[l.bounds[0], l.bounds[1]] img = np.array(255 * (img > ocrolib.midrange(img)), 'B') img = 255 - img img = ocrolib.array2pil(img) file_id = make_file_id(input_file, self.output_file_grp) file_path = self.workspace.save_image_file( img, file_id + "_" + str(n) + "_" + str(i), page_id=page_id, file_grp=self.output_file_grp) ai = AlternativeImageType(filename=file_path, comments=region_xywh['features']) line_id = '%s_line%04d' % (page_id, i) line = TextLineType(custom='readingOrder {index:' + str(i) + ';}', id=line_id, Coords=CoordsType(line_points)) line.add_AlternativeImage(ai) textregion.add_TextLine(line)
def analyze_page_layout(binary, gray, rgb=None): hscale = 1.0 # Non-standard scaling of horizontal parameters. vscale = 1.0 # Non-standard scaling of vertical parameters. threshold = 0.2 # baseline threshold. usegauss = True # Use gaussian instead of uniform. maxseps = 0 # Maximum black column separators. sepwiden = 10 # Widen black separators (to account for warping). blackseps = True maxcolseps = 3 # Maximum # whitespace column separators. csminheight = 10 # Minimum column height (units=scale). noise = 8 # Noise threshold for removing small components from lines. gray_output = True # Output grayscale lines as well, which are extracted from the grayscale version of the pages. pad = 3 # Padding for extracted lines. expand = 3 # Expand mask for grayscale extraction. if False: bin_image_filepath = './ocropy_test.bin.png' gray_image_filepath = './ocropy_test.nrm.png' binary = ocrolib.read_image_binary(bin_image_filepath) gray = ocrolib.read_image_gray(gray_image_filepath) binary = 1 - binary # Invert. scale = psegutils.estimate_scale(binary) segmentation = compute_segmentation(binary, scale, blackseps, maxseps, maxcolseps, csminheight, sepwiden, usegauss, vscale, hscale, threshold, quiet=True) lines = psegutils.compute_lines(segmentation, scale) order = psegutils.reading_order([l.bounds for l in lines]) lsort = psegutils.topsort(order) # Renumber the labels so that they conform to the specs. nlabels = np.amax(segmentation) + 1 renumber = np.zeros(nlabels, 'i') for i, v in enumerate(lsort): renumber[lines[v].label] = 0x010000 + (i + 1) segmentation = renumber[segmentation] # Image. lines = [lines[i] for i in lsort] # Visualize bounding boxes. if False: if rgb is not None: # REF [function] >> extract_masked() in ${OCROPY_HOME}/ocrolib/psegutils.py. for l in lines: y0, x0, y1, x1 = [ int(x) for x in [ l.bounds[0].start, l.bounds[1].start, l.bounds[0].stop, l.bounds[1].stop ] ] cv2.rectangle(rgb, (x0, y0), (x1, y1), (0, 0, 255), 1, cv2.LINE_AA) cv2.imshow('Image', rgb) cv2.waitKey(0) # Output everything. if False: if not os.path.exists(outputdir): os.mkdir(outputdir) ocrolib.write_page_segmentation("%s.pseg.png" % outputdir, segmentation) cleaned = ocrolib.remove_noise(binary, noise) for i, l in enumerate(lines): binline = psegutils.extract_masked(1 - cleaned, l, pad=pad, expand=expand) # Image. ocrolib.write_image_binary( "%s/01%04x.bin.png" % (outputdir, i + 1), binline) if gray_output: grayline = psegutils.extract_masked(gray, l, pad=pad, expand=expand) # Image. ocrolib.write_image_gray( "%s/01%04x.nrm.png" % (outputdir, i + 1), grayline)
def processPngFile(outRoot, origFile, fileNum): baseName = os.path.basename(origFile) baseBase, _ = os.path.splitext(baseName) outDir = os.path.join(outRoot, "%s.%03d" % (baseBase, fileNum)) inFile = os.path.join(outDir, baseName) os.makedirs(outDir, exist_ok=True) shutil.copy(origFile, inFile) inBase, _ = ocrolib.allsplitext(inFile) print("** inBase=%s" % inBase) # print("** binBase=%s" % binBase) fname = inFile outputdir = inBase binFile = inBase + ".bin.png" outFile = inBase + ".out.png" outRoot2, outDir2 = os.path.split(outRoot) outFile2 = os.path.join(outRoot2, "%s.out" % outDir2, baseName) print("outFile2=%s" % outFile2) # assert False grayFile = inBase + ".nrm.png" psegFile = inBase + ".pseg.png" print(" inFile=%s" % inFile) print(" binFile=%s" % binFile) print("grayFile=%s" % grayFile) print(" outFile=%s" % outFile) assert inFile and binFile assert outFile != inFile assert outFile != binFile if not binarize(inFile, binFile, grayFile): binExists = os.path.exists(binFile) print("Couldn't binarize inFile=%s binFile=%s exists=%s" % (inFile, binFile, binExists)) return False binary = ocrolib.read_image_binary(binFile) print("$$ %s=%s" % (binFile, desc(binary))) height, width = binary.shape checktype(binary, ABINARY2) check = check_page(np.amax(binary) - binary) if check is not None: print("%s SKIPPED %s (use -n to disable this check)" % (inFile, check)) return False # if args.gray: # if os.path.exists(base+".nrm.png"): # gray = ocrolib.read_image_gray(base+".nrm.png") # checktype(gray, GRAYSCALE) # else: # print_error("Grayscale version %s.nrm.png not found. Use ocropus-nlbin for creating " + # "normalized grayscale version of the pages as well." % base) # return binary = 1 - binary # invert scale = psegutils.estimate_scale(binary) print("scale %f" % scale) if np.isnan(scale) or scale > 1000.0: print("%s: bad scale (%g); skipping\n" % (fname, scale)) return False # find columns and text lines print("computing segmentation") segmentation = compute_segmentation(binary, scale) if np.amax(segmentation) > maxlines: print("%s: too many lines %g" % (fname, np.amax(segmentation))) return False print("segmentation=%s" % desc(segmentation)) print("number of lines %g" % np.amax(segmentation)) # compute the reading order print("finding reading order") lines = psegutils.compute_lines(segmentation, scale) order = psegutils.reading_order([l.bounds for l in lines]) lsort = psegutils.topsort(order) print("$$ lsort = %d = %s...%s" % (len(lsort), lsort[:10], lsort[-10:])) # renumber the labels so that they conform to the specs nlabels = np.amax(segmentation) + 1 renumber = np.zeros(nlabels, 'i') for i, v in enumerate(lsort): renumber[lines[v].label] = 0x010000 + (i + 1) segmentation = renumber[segmentation] # finally, output everything print("writing lines") if not os.path.exists(outputdir): os.mkdir(outputdir) lines = [lines[i] for i in lsort] ocrolib.write_page_segmentation("%s.pseg.png" % outputdir, segmentation) cleaned = ocrolib.remove_noise(binary, noise) for i, l in enumerate(lines): binline = psegutils.extract_masked(1 - cleaned, l, pad=pad, expand=expand) ocrolib.write_image_binary("%s/01%04x.bin.png" % (outputdir, i + 1), binline) # if args.gray: # grayline = psegutils.extract_masked( # gray, l, pad=args.pad, expand=args.expand) # ocrolib.write_image_gray("%s/01%04x.nrm.png" % (outputdir, i+1), grayline) print("%6d %s %4.1f %d" % (i, fname, scale, len(lines))) # to proceed, we need a pseg file and a subdirectory containing text lines assert os.path.exists(psegFile), "%s: no such file" % psegFile assert os.path.isdir(inBase), "%s: no such directory" % inBase # iterate through the text lines in reading order, based on the page segmentation file pseg = ocrolib.read_page_segmentation(psegFile) print("$$ %s=%s" % (psegFile, desc(pseg))) regions = ocrolib.RegionExtractor() print("$$ regions=%s" % regions) regions.setPageLines(pseg) im = Image.open(inFile) print("~~%s %s" % (inFile, im.size)) print("$$ regions=%s=%s" % (regions, sorted(regions.__dict__))) print("$$ regions.length=%s" % regions.length()) n = regions.length() for i in range(1, n): id = regions.id(i) y0, x0, y1, x1 = regions.bbox(i) # print("%5d: 0x%05X %s %d x %d" % # (i, id, [y0, x0, y1, x1], y1 - y0, x1 - x0)) draw = ImageDraw.Draw(im) draw.rectangle((x0, y0, x1, y1), outline=(255, 0, 0), width=3) draw.rectangle((x0, y0, x1, y1), outline=(0, 0, 255), width=0) # draw.rectangle((x0, y0, x1, y1), outline=255, width=5) # draw.rectangle((x0, y0, x1, y1), outline=10, width=1) del draw # write output files print("outFile=%s" % outFile) im.save(outFile, "PNG") print("outFile2=%s" % outFile2) outDir2 = os.path.dirname(outFile2) os.makedirs(outDir2, exist_ok=True) im.save(outFile2, "PNG") assert os.path.exists(outFile2) # outFile3, _ = os.path.splitext(outFile) # outFile3 = "%s.jpg" % outFile3 # print("outFile3=%s" % outFile3) # im.save(outFile3, "JPEG") # assert os.path.exists(outFile3) return True
def process(job): imagepath, i = job global base base, _ = ocrolib.allsplitext(imagepath) outputdir = base imagename_base = os.path.basename(os.path.normpath(base)) try: binary = ocrolib.read_image_binary(imagepath) except IOError: if ocrolib.trace: traceback.print_exc() print_error("cannot open either %s.bin.png or %s" % (base, imagepath)) return checktype(binary, ABINARY2) if not args['nocheck']: check = check_page(amax(binary) - binary) if check is not None: print_error("%s SKIPPED %s (use -n to disable this check)" % (imagepath, check)) return binary = 1 - binary # invert if args['scale'] == 0: scale = psegutils.estimate_scale(binary) else: scale = args['scale'] print_info("scale %f" % (scale)) if isnan(scale) or scale > 1000.0: print_error("%s: bad scale (%g); skipping\n" % (imagepath, scale)) return if scale < args['minscale']: print_error("%s: scale (%g) less than --minscale; skipping\n" % (imagepath, scale)) return # find columns and text lines if not args['quiet']: print_info("computing segmentation") segmentation = compute_segmentation(binary, scale) if amax(segmentation) > args['maxlines']: print_error("%s: too many lines %g" % (imagepath, amax(segmentation))) return if not args['quiet']: print_info("number of lines %g" % amax(segmentation)) # compute the reading order if not args['quiet']: print_info("finding reading order") lines = psegutils.compute_lines(segmentation, scale) order = psegutils.reading_order([l.bounds for l in lines]) lsort = psegutils.topsort(order) # renumber the labels so that they conform to the specs nlabels = amax(segmentation) + 1 renumber = zeros(nlabels, 'i') for i, v in enumerate(lsort): renumber[lines[v].label] = 0x010000 + (i + 1) segmentation = renumber[segmentation] # finally, output everything if not args['quiet']: print_info("writing lines") if not os.path.exists(outputdir): os.mkdir(outputdir) lines = [lines[i] for i in lsort] ocrolib.write_page_segmentation("%s.pseg.png" % outputdir, segmentation) cleaned = ocrolib.remove_noise(binary, args['noise']) for i, l in enumerate(lines): binline = psegutils.extract_masked(1 - cleaned, l, pad=args['pad'], expand=args['expand']) ocrolib.write_image_binary( "%s/%s_01%04x.bin.png" % (outputdir, imagename_base, i + 1), binline) print_info("%6d %s %4.1f %d" % (i, imagepath, scale, len(lines))) return outputdir
def process1(job): fname, i = job global base base, _ = ocrolib.allsplitext(fname) outputdir = base try: binary = ocrolib.read_image_binary(base + ".bin.png") except IOError: try: binary = ocrolib.read_image_binary(fname) except IOError: if ocrolib.trace: traceback.print_exc() print("cannot open either", base + ".bin.png", "or", fname) return checktype(binary, ABINARY2) if not args.nocheck: check = check_page(amax(binary) - binary) if check is not None: print(fname, "SKIPPED", check, "(use -n to disable this check)") return if args.gray: if os.path.exists(base + ".nrm.png"): gray = ocrolib.read_image_gray(base + ".nrm.png") checktype(gray, GRAYSCALE) binary = 1 - binary # invert if args.scale == 0: scale = psegutils.estimate_scale(binary) else: scale = args.scale print("scale", scale) if isnan(scale) or scale > 1000.0: sys.stderr.write("%s: bad scale (%g); skipping\n" % (fname, scale)) return if scale < args.minscale: sys.stderr.write("%s: scale (%g) less than --minscale; skipping\n" % (fname, scale)) return # find columns and text lines if not args.quiet: print("computing segmentation") segmentation = compute_segmentation(binary, scale) if amax(segmentation) > args.maxlines: print(fname, ": too many lines", amax(segmentation)) return if not args.quiet: print("number of lines", amax(segmentation)) # compute the reading order if not args.quiet: print("finding reading order") lines = psegutils.compute_lines(segmentation, scale) order = psegutils.reading_order([l.bounds for l in lines]) lsort = psegutils.topsort(order) # renumber the labels so that they conform to the specs nlabels = amax(segmentation) + 1 renumber = zeros(nlabels, 'i') for i, v in enumerate(lsort): renumber[lines[v].label] = 0x010000 + (i + 1) segmentation = renumber[segmentation] # finally, output everything if not args.quiet: print("writing lines") if not os.path.exists(outputdir): os.mkdir(outputdir) lines = [lines[i] for i in lsort] ocrolib.write_page_segmentation("%s.pseg.png" % outputdir, segmentation) cleaned = ocrolib.remove_noise(binary, args.noise) for i, l in enumerate(lines): binline = psegutils.extract_masked(1 - cleaned, l, pad=args.pad, expand=args.expand) ocrolib.write_image_binary("%s/01%04x.bin.png" % (outputdir, i + 1), binline) if args.gray: grayline = psegutils.extract_masked(gray, l, pad=args.pad, expand=args.expand) ocrolib.write_image_gray("%s/01%04x.nrm.png" % (outputdir, i + 1), grayline) print("%6d" % i, fname, "%4.1f" % scale, len(lines))
def _process_segment(self, page_image, page, region_xywh, page_id, input_file, n): binary = ocrolib.pil2array(page_image) binary = np.array(1 - binary / np.amax(binary), 'B') if page.get_TextRegion() is None or len(page.get_TextRegion()) < 1: min_x, max_x = (0, binary.shape[0]) min_y, max_y = (0, binary.shape[1]) textregion = TextRegionType( Coords=CoordsType("%i,%i %i,%i %i,%i %i,%i" % (min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y))) page.add_TextRegion(textregion) else: textregion = page.get_TextRegion()[-1] ocrolib.write_image_binary("test.bin.png", binary) if self.parameter['scale'] == 0: scale = psegutils.estimate_scale(binary) else: scale = self.parameter['scale'] if np.isnan( scale) or scale > 1000.0 or scale < self.parameter['minscale']: LOG.warning("%s: bad scale (%g); skipping\n" % (fname, scale)) return segmentation = self.compute_segmentation(binary, scale) if np.amax(segmentation) > self.parameter['maxlines']: LOG.warning("%s: too many lines %i", (fname, np.amax(segmentation))) return lines = psegutils.compute_lines(segmentation, scale) order = psegutils.reading_order([l.bounds for l in lines]) lsort = psegutils.topsort(order) # renumber the labels so that they conform to the specs nlabels = np.amax(segmentation) + 1 renumber = np.zeros(nlabels, 'i') for i, v in enumerate(lsort): renumber[lines[v].label] = 0x010000 + (i + 1) segmentation = renumber[segmentation] lines = [lines[i] for i in lsort] cleaned = ocrolib.remove_noise(binary, self.parameter['noise']) region_xywh['features'] += ",textline" for i, l in enumerate(lines): ocrolib.write_image_binary("test.bin.png", binary[l.bounds[0], l.bounds[1]]) min_x, max_x = (l.bounds[0].start, l.bounds[0].stop) min_y, max_y = (l.bounds[1].start, l.bounds[1].stop) img = binary[l.bounds[0], l.bounds[1]] img = np.array(255 * (img > ocrolib.midrange(img)), 'B') img = ocrolib.array2pil(img) file_id = input_file.ID.replace(self.input_file_grp, self.image_grp) if file_id == input_file.ID: file_id = concat_padded(self.image_grp, n) file_path = self.workspace.save_image_file(img, file_id + "_" + str(i), page_id=page_id, file_grp=self.image_grp) ai = AlternativeImageType(filename=file_path, comments=region_xywh['features']) line = TextLineType( Coords=CoordsType("%i,%i %i,%i %i,%i %i,%i" % (min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y))) line.add_AlternativeImage(ai) textregion.add_TextLine(line)