def convolute(img, kernel): output = oc.conv2(img, kernel, 'same') # output = cv2.filter2D(img, cv2.CV_64F, kernel) #plt.imsave(str(i)+str(j),output, cmap = plt.cm.gray) return output / 18
image, scaleFactor = 1.1, minNeighbors = 5, minSize = (30, 30), flags = cv2.cv.CV_HAAR_SCALE_IMAGE ) #Draw a rectangle around the faces for (x, y, w, h) in face: roi = image[y:y+h, x:x+w] roi = cv2.resize(roi,(157,157)) result = [] for k in [kernels]: output = oc.conv2(roi,k,'same') result.append(output) print result[0].shape total = result[0] np.savez('tempwavelet',result[0].reshape((1,total.shape[0]*total.shape[1]))) ''' total = np.zeros(result[0].shape) for i in range(18): plt1 = plt.gca() plt1.axes.get_xaxis().set_ticks([]) plt1.axes.get_yaxis().set_ticks([]) plt.subplot(6,3,i+1) total += result[i] plt.imshow(result[i],'gray') '''
face = faceCascade.detectMultiScale(image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv2.cv.CV_HAAR_SCALE_IMAGE) #Draw a rectangle around the faces for (x, y, w, h) in face: roi = image[y:y + h, x:x + w] roi = cv2.resize(roi, (157, 157)) result = [] for k in [kernels]: output = oc.conv2(roi, k, 'same') result.append(output) print result[0].shape total = result[0] np.savez('tempwavelet', result[0].reshape( (1, total.shape[0] * total.shape[1]))) ''' total = np.zeros(result[0].shape) for i in range(18): plt1 = plt.gca() plt1.axes.get_xaxis().set_ticks([]) plt1.axes.get_yaxis().set_ticks([]) plt.subplot(6,3,i+1) total += result[i] plt.imshow(result[i],'gray')
def convolute(img,kernel): output = oc.conv2(img,kernel,'same') # output = cv2.filter2D(img, cv2.CV_64F, kernel) #plt.imsave(str(i)+str(j),output, cmap = plt.cm.gray) return output/18