예제 #1
0
def test_salt_bridges():
    """Salt bridges test"""
    salt_bridges_count = [len(salt_bridges(rec, mol)[0]) for mol in mols]
    # print(salt_bridges_count)
    assert_array_equal(salt_bridges_count, [
        6, 7, 5, 5, 6, 5, 6, 4, 6, 5, 4, 6, 6, 5, 8, 5, 6, 6, 6, 7, 6, 6, 5, 6,
        7, 5, 5, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 5, 5, 6, 4, 5, 5, 6, 6, 3, 5, 5,
        4, 6, 4, 8, 6, 6, 6, 4, 6, 6, 6, 6, 7, 6, 7, 6, 6, 7, 6, 6, 6, 5, 4, 5,
        5, 6, 6, 6, 6, 6, 6, 4, 7, 5, 6, 6, 5, 6, 6, 5, 6, 5, 6, 5, 5, 7, 7, 6,
        8, 6, 4, 5
    ])
예제 #2
0
def test_salt_bridges():
    """Salt bridges test"""
    salt_bridges_count = np.array(
        [len(salt_bridges(rec, mol)[0]) for mol in mols])
    assert_array_equal(salt_bridges_count, [
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2,
        2, 2, 2, 2
    ])
예제 #3
0
def test_salt_bridges():
    """Salt bridges test"""
    salt_bridges_count = [len(salt_bridges(rec, mol)[0]) for mol in mols]
    # print(salt_bridges_count)
    assert_array_equal(salt_bridges_count,
                       [6, 7, 5, 5, 6, 5, 6, 4, 6, 5, 4, 6, 6, 5, 8, 5, 6, 6,
                        6, 7, 6, 6, 5, 6, 7, 5, 5, 7, 6, 6, 7, 6, 6, 6, 6, 6,
                        6, 5, 5, 6, 4, 5, 5, 6, 6, 3, 5, 5, 4, 6, 4, 8, 6, 6,
                        6, 4, 6, 6, 6, 6, 7, 6, 7, 6, 6, 7, 6, 6, 6, 5, 4, 5,
                        5, 6, 6, 6, 6, 6, 6, 4, 7, 5, 6, 6, 5, 6, 6, 5, 6, 5,
                        6, 5, 5, 7, 7, 6, 8, 6, 4, 5])
예제 #4
0
파일: binana.py 프로젝트: ravila4/oddt
    def build(self, ligands, protein=None):
        """ Descriptor building method

        Parameters
        ----------
            ligands: array-like
                An array of generator of oddt.toolkit.Molecule objects for which the descriptor is computed

            protein: oddt.toolkit.Molecule object (default=None)
                Protein object to be used while generating descriptors.
                If none, then the default protein (from constructor) is used.
                Otherwise, protein becomes new global and default protein.

        Returns
        -------
            descs: numpy array, shape=[n_samples, 351]
                An array of binana descriptors, aligned with input ligands
        """
        if protein:
            self.set_protein(protein)
        else:
            protein = self.protein
        protein_dict = protein.atom_dict
        desc = None
        for mol in ligands:
            mol_dict = mol.atom_dict
            vec = np.array([], dtype=float)
            vec = tuple()
            # Vina
            # TODO: Asynchronous output from vina, push command to score and retrieve at the end?
            # TODO: Check if ligand has vina scores
            vec += tuple(self.vina.build(mol).flatten())

            # Close Contacts (<4A)
            vec += tuple(self.cc_4.build(mol).flatten())

            # Electrostatics (<4A)
            ele_rec_types, ele_lig_types = zip(*self.ele_types)
            ele_mol_atoms = atoms_by_type(mol_dict, ele_lig_types,
                                          'atom_types_ad4')
            ele_rec_atoms = atoms_by_type(protein_dict, ele_rec_types,
                                          'atom_types_ad4')
            ele = tuple()
            for r_t, m_t in self.ele_types:
                mol_ele_dict, rec_ele_dict = close_contacts(
                    ele_mol_atoms[m_t], ele_rec_atoms[r_t], 4)
                if len(mol_ele_dict) and len(rec_ele_dict):
                    ele += (mol_ele_dict['charge'] * rec_ele_dict['charge'] /
                            np.sqrt((mol_ele_dict['coords'] -
                                     rec_ele_dict['coords'])**2).sum(axis=-1) *
                            138.94238460104697e4).sum(),  # convert to J/mol
                else:
                    ele += 0,
            vec += tuple(np.nan_to_num(ele))

            # Ligand Atom Types
            atoms = atoms_by_type(mol_dict, self.ligand_atom_types,
                                  'atom_types_ad4')
            vec += tuple([len(atoms[t]) for t in self.ligand_atom_types])

            # Close Contacts (<2.5A)
            vec += tuple(self.cc_25.build(mol).flatten())

            # H-Bonds (<4A)
            hbond_mol, hbond_rec, strict = hbonds(mol, protein, 4)
            # Retain only strict hbonds
            hbond_mol = hbond_mol[strict]
            hbond_rec = hbond_rec[strict]
            backbone = hbond_rec['isbackbone']
            alpha = hbond_rec['isalpha']
            beta = hbond_rec['isbeta']
            other = ~alpha & ~beta
            donor_mol = hbond_mol['isdonor']
            donor_rec = hbond_rec['isdonor']
            hbond_vec = ((donor_mol & backbone
                          & alpha).sum(), (donor_mol & backbone & beta).sum(),
                         (donor_mol & backbone & other).sum(),
                         (donor_mol & ~backbone
                          & alpha).sum(), (donor_mol & ~backbone & beta).sum(),
                         (donor_mol & ~backbone
                          & other).sum(), (donor_rec & backbone & alpha).sum(),
                         (donor_rec & backbone & beta).sum(),
                         (donor_rec & backbone & other).sum(),
                         (donor_rec & ~backbone & alpha).sum(),
                         (donor_rec & ~backbone
                          & beta).sum(), (donor_rec & ~backbone & other).sum())
            vec += tuple(hbond_vec)

            # Hydrophobic contacts (<4A)
            hydrophobic = hydrophobic_contacts(mol, protein, 4)[1]
            backbone = hydrophobic['isbackbone']
            alpha = hydrophobic['isalpha']
            beta = hydrophobic['isbeta']
            other = ~alpha & ~beta
            hyd_vec = ((backbone & alpha).sum(), (backbone & beta).sum(),
                       (backbone & other).sum(), (~backbone & alpha).sum(),
                       (~backbone & beta).sum(), (~backbone & other).sum(),
                       len(hydrophobic))
            vec += tuple(hyd_vec)

            # Pi-stacking (<7.5A)
            pi_mol, pi_rec, pi_paralel, pi_tshaped = pi_stacking(
                mol, protein, 7.5)
            alpha = pi_rec['isalpha'] & pi_paralel
            beta = pi_rec['isbeta'] & pi_paralel
            other = ~alpha & ~beta & pi_paralel
            pi_vec = (alpha.sum(), beta.sum(), other.sum())
            vec += tuple(pi_vec)

            # T-shaped Pi-Pi interaction
            alpha = pi_rec['isalpha'] & pi_tshaped
            beta = pi_rec['isbeta'] & pi_tshaped
            other = ~alpha & ~beta & pi_tshaped
            pi_t_vec = (alpha.sum(), beta.sum(), other.sum())

            # Pi-cation (<6A)
            pi_rec, cat_mol, strict = pi_cation(protein, mol, 6)
            alpha = pi_rec['isalpha'] & strict
            beta = pi_rec['isbeta'] & strict
            other = ~alpha & ~beta & strict
            pi_cat_vec = (alpha.sum(), beta.sum(), other.sum())

            pi_mol, cat_rec, strict = pi_cation(mol, protein, 6)
            alpha = cat_rec['isalpha'] & strict
            beta = cat_rec['isbeta'] & strict
            other = ~alpha & ~beta & strict
            pi_cat_vec += (alpha.sum(), beta.sum(), other.sum())

            vec += tuple(pi_cat_vec)

            # T-shape (perpendicular Pi's) (<7.5A)
            vec += tuple(pi_t_vec)

            # Active site flexibility (<4A)
            acitve_site = close_contacts(
                mol_dict[mol_dict['atomicnum'] != 1],
                protein_dict[protein_dict['atomicnum'] != 1],
                cutoff=4)[1]
            backbone = acitve_site['isbackbone']
            alpha = acitve_site['isalpha']
            beta = acitve_site['isbeta']
            other = ~alpha & ~beta
            as_flex = ((backbone & alpha).sum(), (backbone & beta).sum(),
                       (backbone & other).sum(), (~backbone & alpha).sum(),
                       (~backbone & beta).sum(), (~backbone & other).sum(),
                       len(acitve_site))
            vec += tuple(as_flex)

            # Salt bridges (<5.5)
            salt_bridge_dict = salt_bridges(mol, protein, 5.5)[1]
            vec += (salt_bridge_dict['isalpha'].sum(),
                    salt_bridge_dict['isbeta'].sum(),
                    (~salt_bridge_dict['isalpha']
                     & ~salt_bridge_dict['isbeta']).sum(),
                    len(salt_bridge_dict))

            # Rotatable bonds
            vec += mol.num_rotors,

            if desc is None:
                desc = np.zeros(len(vec), dtype=float)
            desc = np.vstack((desc, np.array(vec, dtype=float)))

        return desc[1:]
예제 #5
0
파일: binana.py 프로젝트: DrewG/oddt
 def build(self, ligands, protein = None):
     """ Descriptor building method
     
     Parameters
     ----------
         ligands: array-like
             An array of generator of oddt.toolkit.Molecule objects for which the descriptor is computed
         
         protein: oddt.toolkit.Molecule object (default=None)
             Protein object to be used while generating descriptors. If none, then the default protein (from constructor) is used. Otherwise, protein becomes new global and default protein.
     
     Returns
     -------
         descs: numpy array, shape=[n_samples, 351]
             An array of binana descriptors, aligned with input ligands
     """
     if protein:
         self.set_protein(protein)
     else:
         protein = self.protein
     protein_dict = protein.atom_dict
     desc = None
     for mol in ligands:
         mol_dict = mol.atom_dict
         vec = np.array([], dtype=float)
         vec = tuple()
         # Vina
         ### TODO: Asynchronous output from vina, push command to score and retrieve at the end?
         ### TODO: Check if ligand has vina scores
         scored_mol = self.vina.score(mol, single=True)[0].data
         vina_scores = ['vina_affinity', 'vina_gauss1', 'vina_gauss2', 'vina_repulsion', 'vina_hydrophobic', 'vina_hydrogen']
         vec += tuple([scored_mol[key] for key in vina_scores])
         
         # Close Contacts (<4A)
         vec += tuple(self.cc_4.build(mol, single=True).flatten())
         
         # Electrostatics (<4A)
         ele_types = (('A', 'A'), ('A', 'C'), ('A', 'CL'), ('A', 'F'), ('A', 'FE'), ('A', 'HD'), ('A', 'MG'), ('A', 'MN'), ('A', 'N'), ('A', 'NA'), ('A', 'OA'), ('A', 'SA'), ('A', 'ZN'), ('BR', 'C'), ('BR', 'HD'), ('BR', 'OA'), ('C', 'C'), ('C', 'CL'), ('C', 'F'), ('C', 'HD'), ('C', 'MG'), ('C', 'MN'), ('C', 'N'), ('C', 'NA'), ('C', 'OA'), ('C', 'SA'), ('C', 'ZN'), ('CL', 'FE'), ('CL', 'HD'), ('CL', 'MG'), ('CL', 'N'), ('CL', 'OA'), ('CL', 'ZN'), ('F', 'HD'), ('F', 'N'), ('F', 'OA'), ('F', 'SA'), ('F', 'ZN'), ('FE', 'HD'), ('FE', 'N'), ('FE', 'OA'), ('HD', 'HD'), ('HD', 'I'), ('HD', 'MG'), ('HD', 'MN'), ('HD', 'N'), ('HD', 'NA'), ('HD', 'OA'), ('HD', 'P'), ('HD', 'S'), ('HD', 'SA'), ('HD', 'ZN'), ('MG', 'NA'), ('MG', 'OA'), ('MN', 'N'), ('MN', 'OA'), ('N', 'N'), ('N', 'NA'), ('N', 'OA'), ('N', 'SA'), ('N', 'ZN'), ('NA', 'OA'), ('NA', 'SA'), ('NA', 'ZN'), ('OA', 'OA'), ('OA', 'SA'), ('OA', 'ZN'), ('S', 'ZN'), ('SA', 'ZN'), ('A', 'BR'), ('A', 'I'), ('A', 'P'), ('A', 'S'), ('BR', 'N'), ('BR', 'SA'), ('C', 'FE'), ('C', 'I'), ('C', 'P'), ('C', 'S'), ('CL', 'MN'), ('CL', 'NA'), ('CL', 'P'), ('CL', 'S'), ('CL', 'SA'), ('CU', 'HD'), ('CU', 'N'), ('FE', 'NA'), ('FE', 'SA'), ('I', 'N'), ('I', 'OA'), ('MG', 'N'), ('MG', 'P'), ('MG', 'S'), ('MG', 'SA'), ('MN', 'NA'), ('MN', 'P'), ('MN', 'S'), ('MN', 'SA'), ('N', 'P'), ('N', 'S'), ('NA', 'P'), ('NA', 'S'), ('OA', 'P'), ('OA', 'S'), ('P', 'S'), ('P', 'SA'), ('P', 'ZN'), ('S', 'SA'), ('SA', 'SA'))
         ele_rec_types, ele_lig_types = zip(*ele_types)
         ele_mol_atoms = atoms_by_type(mol_dict, ele_lig_types, 'atom_types_ad4')
         ele_rec_atoms = atoms_by_type(protein_dict, ele_rec_types, 'atom_types_ad4')
         ele = tuple()
         for r_t, m_t in ele_types:
             mol_ele_dict, rec_ele_dict = interactions.close_contacts(ele_mol_atoms[m_t], ele_rec_atoms[r_t], 4)
             if len(mol_ele_dict) and len(rec_ele_dict):
                 ele += (mol_ele_dict['charge'] * rec_ele_dict['charge']/ np.sqrt((mol_ele_dict['coords'] - rec_ele_dict['coords'])**2).sum(axis=-1) * 138.94238460104697e4).sum(), # convert to J/mol
             else:
                 ele += 0,
         vec += tuple(ele)
         
         # Ligand Atom Types
         ligand_atom_types = ['A', 'BR', 'C', 'CL', 'F', 'HD', 'I', 'N', 'NA', 'OA', 'P', 'S', 'SA']
         atoms = atoms_by_type(mol_dict, ligand_atom_types, 'atom_types_ad4')
         atoms_counts = [len(atoms[t]) for t in ligand_atom_types]
         vec += tuple(atoms_counts)
         
         # Close Contacts (<2.5A)
         vec += tuple(self.cc_25.build(mol, single=True).flatten())
         
         # H-Bonds (<4A)
         hbond_mol, hbond_rec, strict = interactions.hbond(mol, protein, 4)
         # Retain only strict hbonds
         hbond_mol = hbond_mol[strict]
         hbond_rec = hbond_rec[strict]
         backbone = hbond_rec['isbackbone']
         alpha = hbond_rec['isalpha']
         beta = hbond_rec['isbeta']
         other = ~alpha & ~beta
         donor_mol = hbond_mol['isdonor']
         donor_rec = hbond_rec['isdonor']
         hbond_vec = ((donor_mol & backbone & alpha).sum(), (donor_mol & backbone & beta).sum(), (donor_mol & backbone & other).sum(),
                     (donor_mol & ~backbone & alpha).sum(), (donor_mol & ~backbone & beta).sum(), (donor_mol & ~backbone & other).sum(),
                     (donor_rec & backbone & alpha).sum(), (donor_rec & backbone & beta).sum(), (donor_rec & backbone & other).sum(),
                     (donor_rec & ~backbone & alpha).sum(), (donor_rec & ~backbone & beta).sum(), (donor_rec & ~backbone & other).sum())
         vec += tuple(hbond_vec)
         
         # Hydrophobic contacts (<4A)
         hydrophobic = interactions.hydrophobic_contacts(mol, protein, 4)[1]
         backbone = hydrophobic['isbackbone']
         alpha = hydrophobic['isalpha']
         beta = hydrophobic['isbeta']
         other = ~alpha & ~beta
         hyd_vec = ((backbone & alpha).sum(), (backbone & beta).sum(), (backbone & other).sum(),
                    (~backbone & alpha).sum(), (~backbone & beta).sum(), (~backbone & other).sum(), len(hydrophobic))
         vec += tuple(hyd_vec)
         
         # Pi-stacking (<7.5A)
         pi_mol, pi_rec, pi_paralel, pi_tshaped = interactions.pi_stacking(mol, protein, 7.5)
         alpha = pi_rec['isalpha'] & pi_paralel
         beta = pi_rec['isbeta'] & pi_paralel
         other = ~alpha & ~beta & pi_paralel
         pi_vec = (alpha.sum(), beta.sum(), other.sum())
         vec += tuple(pi_vec)
         
         # count T-shaped Pi-Pi interaction
         alpha = pi_rec['isalpha'] & pi_tshaped
         beta = pi_rec['isbeta'] & pi_tshaped
         other = ~alpha & ~beta & pi_tshaped
         pi_t_vec = (alpha.sum(), beta.sum(), other.sum())
         
         # Pi-cation (<6A)
         pi_rec, cat_mol, strict = interactions.pi_cation(protein, mol, 6)
         alpha = pi_rec['isalpha'] & strict
         beta = pi_rec['isbeta'] & strict
         other = ~alpha & ~beta & strict
         pi_cat_vec = (alpha.sum(), beta.sum(), other.sum())
         
         pi_mol, cat_rec, strict = interactions.pi_cation(mol, protein, 6)
         alpha = cat_rec['isalpha'] & strict
         beta = cat_rec['isbeta'] & strict
         other = ~alpha & ~beta & strict
         pi_cat_vec += (alpha.sum(), beta.sum(), other.sum())
         
         vec += tuple(pi_cat_vec)
         
         # T-shape (perpendicular Pi's) (<7.5A)
         vec += tuple(pi_t_vec)
         
         # Active site flexibility (<4A)
         acitve_site = interactions.close_contacts(mol_dict, protein_dict, 4)[1]
         backbone = acitve_site['isbackbone']
         alpha = acitve_site['isalpha']
         beta = acitve_site['isbeta']
         other = ~alpha & ~beta
         as_flex = ((backbone & alpha).sum(), (backbone & beta).sum(), (backbone & other).sum(),
                    (~backbone & alpha).sum(), (~backbone & beta).sum(), (~backbone & other).sum(), len(acitve_site))
         vec += tuple(as_flex)
         
         # Salt bridges (<5.5)
         salt_bridges = interactions.salt_bridges(mol, protein, 5.5)[1]
         vec += (salt_bridges['isalpha'].sum(), salt_bridges['isbeta'].sum(),
                                (~salt_bridges['isalpha'] & ~salt_bridges['isbeta']).sum(), len(salt_bridges))
         
         # Rotatable bonds
         vec += mol.num_rotors,
         
         if desc is None:
             desc = np.zeros(len(vec), dtype=float)
         desc = np.vstack((desc, np.array(vec, dtype=float)))
     
     return desc[1:]
예제 #6
0
def InteractionCheck(ppath, Listoflig, cur_dir):
    global proteinpath
    proteinpath = ppath
    os.chdir(os.path.dirname(proteinpath))
#    pname = os.path.basename(proteinpath)

    # protein = next(oddt.toolkit.readfile('pdb', proteinpath, removeHs=False, cleanupSubstructures=False, sanitize=False))
    try:
        protein = next(oddt.toolkit.readfile('pdb', proteinpath, removeHs=False))
        protein.protein = True
    except Exception as e:

        print("Input structure could not be split into protein and ligand. Please check ligand identifier.")
        f2 = open(os.path.join(os.path.basename(proteinpath), 'ErrorLog.txt'), 'w')
        f2.write(str(e))
        f2.close()


    for ligand_object in Listoflig:
        ligandname = ligand_object.PoseNameExt

        ResReport = ligand_object.PoseName + "_ResidueReport.csv"
        path = os.path.join(cur_dir, 'Fingerprint', ResReport)

        file = open(path, 'w')
        file.write("Ligand interactions with protein residues\n")
        file.close()

        # Read in and define the reference ligand
        ligand = next(oddt.toolkit.readfile('pdb', ligandname, removeHs=False))

        # Hydrophobic interactions
        p_hydroph, l_hydroph = interactions.hydrophobic_contacts(protein, ligand)
        InteractionsFile(p_hydroph, l_hydroph, path, 'hydrophobic')

        # h bonds
        p_hbonds, l_hbonds, strict = interactions.hbonds(protein, ligand)
        InteractionsFile(p_hbonds, l_hbonds, path, 'hydrogen bond')

        # halogens
        p_halogen, l_halogen, strict = interactions.halogenbonds(protein, ligand)
        InteractionsFile(p_halogen, l_halogen, path, 'halogen bond')

        # pistacking bonds
        pi_interactions = interactions.pi_stacking(protein, ligand)
        InteractionsFile(pi_interactions[0], pi_interactions[2], path, 'pi stacking')

        # salt bridges
        p_salt_bridges, l_salt_bridges = interactions.salt_bridges(protein, ligand)
        InteractionsFile(p_salt_bridges, l_salt_bridges, path, 'salt bridge')

        # pi_cation
        p_pi_cation, l_pi_cation, strict = interactions.pi_cation(protein, ligand)
        InteractionsFile(p_pi_cation, l_pi_cation, path, 'pi cation')

        # acceptor_metal bonds
        p_acceptor_metal_a, acceptor_metal_a, strict = interactions.acceptor_metal(protein, ligand)
        InteractionsFile(p_acceptor_metal_a, acceptor_metal_a, path, 'acceptor metal')

        # pi_metal bonds

        p_pi_metal, l_pi_metal, strict = interactions.pi_metal(protein, ligand)
        InteractionsFile(p_pi_metal, l_pi_metal, path, 'pi metal')
예제 #7
0
print('Protein:', protein_pdbfile)
print('Ligand:' + ligand_molfile)
print('Num protein/ligand atoms:', len(protein.atoms), len(ligand.atoms))
print('Exact ligand =', exact_ligand)

protein_atoms, ligand_atoms, strict = interactions.hbonds(
    protein, ligand, mol1_exact=False, mol2_exact=exact_ligand)
count = 0
for p, l, s in zip(protein_atoms, ligand_atoms, strict):
    count += 1
    print('  H-bond', get_canonical_hbond(p), '-', l['atomtype'],
          l['id'].item(), s)
print('Found', count, 'H-bond interactions')

protein_atoms, ligand_atoms = interactions.salt_bridges(
    protein, ligand, mol2_exact=exact_ligand)
count = 0
for p, l in zip(protein_atoms, ligand_atoms):
    count += 1
    print('  SaltBr', p['resname'] + str(p['resnum']), '-', l['atomtype'],
          l['id'].item())
print('Found', count, 'SaltBr interactions')

protein_atoms, ligand_atoms = oddt.interactions.hydrophobic_contacts(
    protein, ligand)
count = 0
for p, l in zip(protein_atoms, ligand_atoms):
    count += 1
    print('  Hphobe', p['resname'] + str(p['resnum']), '-', l['atomtype'],
          l['id'].item())
print('Found', count, 'Hphobe interactions')