def align(self, dlg): ''' Executes the alignment. If the alignment is successful, the aligned stream is added to the main window. If not, an error message is shown. dlg (AlignmentAcquisitionDialog): The plugin dialog ''' crop = (self.crop_top.value, self.crop_bottom.value, self.crop_left.value, self.crop_right.value) flip = (self.flip_x.value, self.flip_y.value) tem_img = preprocess(self._nem_proj.raw[0], self.invert.value, flip, crop, self.blur.value, True) sem_raw = img.ensure2DImage(self._rem_proj.raw[0]) sem_img = preprocess(sem_raw, False, (False, False), (0, 0, 0, 0), self.blur_ref.value, True) try: tmat, _, _, _, _ = keypoint.FindTransform(tem_img, sem_img) # get the metadata corresponding to the transformation transf_md = get_img_transformation_md(tmat, tem_img, sem_img) logging.debug("Computed transformation metadata: %s", transf_md) except ValueError as ex: box = wx.MessageDialog(dlg, str(ex), "Failed to align images", wx.OK | wx.ICON_STOP) box.ShowModal() box.Destroy() return # Shear is really big => something is gone wrong if abs(transf_md[model.MD_SHEAR]) > 1: logging.warning( "Shear is %g, which means the alignment is probably wrong", transf_md[model.MD_SHEAR]) transf_md[model.MD_SHEAR] = 0 # Pixel size ratio is more than 2 ? => something is gone wrong # TODO: pixel size 100x bigger/smaller than the reference is also wrong pxs = transf_md[model.MD_PIXEL_SIZE] if not (0.5 <= pxs[0] / pxs[1] <= 2): logging.warning( "Pixel size is %s, which means the alignment is probably wrong", pxs) transf_md[model.MD_PIXEL_SIZE] = (pxs[0], pxs[0]) # The actual image inserted is not inverted and not blurred, but we still # want it flipped and cropped. raw = preprocess(self._nem_proj.raw[0], False, flip, crop, 0, False) raw.metadata.update(transf_md) # Add a new stream panel (removable) analysis_tab = self.main_app.main_data.getTabByName('analysis') aligned_stream = stream.StaticSEMStream( self._nem_proj.stream.name.value, raw) scont = analysis_tab.stream_bar_controller.addStream(aligned_stream, add_to_view=True) scont.stream_panel.show_remove_btn(True) # Finish by closing the window dlg.Close()
def align(self, dlg): ''' Executes the alignment. If the alignment is successful, the aligned stream is added to the main window. If not, an error message is shown. dlg (AlignmentAcquisitionDialog): The plugin dialog ''' crop = (self.crop_top.value, self.crop_bottom.value, self.crop_left.value, self.crop_right.value) flip = (self.flip_x.value, self.flip_y.value) tem_img = preprocess(self._nem_proj.raw[0], self.invert.value, flip, crop, self.blur.value, True) sem_raw = img.ensure2DImage(self._rem_proj.raw[0]) sem_img = preprocess(sem_raw, False, (False, False), (0, 0, 0, 0), self.blur_ref.value, True) try: tmat, _, _, _, _ = keypoint.FindTransform(tem_img, sem_img) # get the metadata corresponding to the transformation transf_md = get_img_transformation_md(tmat, tem_img, sem_img) logging.debug("Computed transformation metadata: %s", transf_md) except ValueError as ex: box = wx.MessageDialog(dlg, str(ex), "Failed to align images", wx.OK | wx.ICON_STOP) box.ShowModal() box.Destroy() return # Shear is really big => something is gone wrong if abs(transf_md[model.MD_SHEAR]) > 1: logging.warning("Shear is %g, which means the alignment is probably wrong", transf_md[model.MD_SHEAR]) transf_md[model.MD_SHEAR] = 0 # Pixel size ratio is more than 2 ? => something is gone wrong # TODO: pixel size 100x bigger/smaller than the reference is also wrong pxs = transf_md[model.MD_PIXEL_SIZE] if not (0.5 <= pxs[0] / pxs[1] <= 2): logging.warning("Pixel size is %s, which means the alignment is probably wrong", pxs) transf_md[model.MD_PIXEL_SIZE] = (pxs[0], pxs[0]) # The actual image inserted is not inverted and not blurred, but we still # want it flipped and cropped. raw = preprocess(self._nem_proj.raw[0], False, flip, crop, 0, False) raw.metadata.update(transf_md) # Add a new stream panel (removable) analysis_tab = self.main_app.main_data.getTabByName('analysis') aligned_stream = stream.StaticSEMStream(self._nem_proj.stream.name.value, raw) scont = analysis_tab.stream_bar_controller.addStream(aligned_stream, add_to_view=True) scont.stream_panel.show_remove_btn(True) # Finish by closing the window dlg.Destroy()
def test_get_img_transformation_md(self): simg = numpy.zeros((512, 512), dtype=numpy.uint8) smd = { model.MD_PIXEL_SIZE: (1e-6, 1e-6), model.MD_POS: (-123, 23e-6), model.MD_ROTATION: 0.05, # model.MD_SHEAR : not defined } simg = model.DataArray(simg, smd) timg = numpy.zeros((512, 512), dtype=numpy.uint8) timg = model.DataArray(timg) # simplest matrix (unity) => same metadata as input mat = numpy.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) omd = get_img_transformation_md(mat, timg, simg) self.assertEqual(omd[model.MD_PIXEL_SIZE], smd[model.MD_PIXEL_SIZE]) self.assertEqual(omd[model.MD_POS], smd[model.MD_POS]) self.assertAlmostEqual(omd[model.MD_ROTATION], smd[model.MD_ROTATION]) self.assertAlmostEqual(omd[model.MD_SHEAR], 0)
def test_image_pair(self): ''' Testing a pair of images ''' # WARNING: if opencv is not compiled with SIFT support (ie, only ORB # available), then this test case will fail. # FIXME: these two images are very hard, and any tiny change in the # algorithm or settings can cause the alignment to fail => not a good # test case # only one image will be used, but this structure helps to test # different images image_pairs = [ ( ('Slice69_stretched.tif', True, (False, True), (0, 0, 0, 0), 6), ('g_009_cropped.tif', False, (False, False), (0, 0, 0, 0), 3) ), # ( # ('001_CBS_010.tif', False, (False, False), (0, 0, 0, 0), 0), # ('20141014-113042_1.tif', False, (False, False), (0, 0, 0, 0), 0) # ), # ( # ('t3 DELPHI.tiff', False, (False, False), (0, 200, 0, 0), 3), # ('t3 testoutA3.tif', False, (False, False), (0, 420, 0, 0), 3) # ) ] image_pair = image_pairs[0] # open the images tem_img = open_acquisition(os.path.join(IMG_PATH, image_pair[0][0]))[0].getData() sem_img = open_acquisition(os.path.join(IMG_PATH, image_pair[1][0]))[0].getData() # preprocess tem_img = preprocess(tem_img, image_pair[0][1], image_pair[0][2], image_pair[0][3], image_pair[0][4], True) sem_img = preprocess(sem_img, image_pair[1][1], image_pair[1][2], image_pair[1][3], image_pair[1][4], True) # execute the algorithm to find the transform between the images tmat, _, _, _, _ = keypoint.FindTransform(tem_img, sem_img) # uncomment this if you want to see the keypoint images '''tem_painted_kp = cv2.drawKeypoints(tem_img, tem_kp, None, color=(0,255,0), flags=0) sem_painted_kp = cv2.drawKeypoints(sem_img, sem_kp, None, color=(0,255,0), flags=0) cv2.imwrite(IMG_PATH + 'tem_kp.jpg', tem_painted_kp) cv2.imwrite(IMG_PATH + 'sem_kp.jpg', sem_painted_kp)''' # uncomment this if you want to see the warped image '''warped_im = cv2.warpPerspective(tem_img, tmat, (sem_img.shape[1], sem_img.shape[0])) merged_im = cv2.addWeighted(sem_img, 0.5, warped_im, 0.5, 0.0) cv2.imwrite(IMG_PATH + 'merged_with_warped.jpg', merged_im)''' tmetadata = get_img_transformation_md(tmat, tem_img, sem_img) logging.debug("Computed metadata = %s", tmetadata) # FIXME: these values are actually pretty bad # comparing based on a successful alignment validated from the warped image # self.assertAlmostEqual(8.7e-07, tmetadata[model.MD_PIXEL_SIZE][0], places=6) # self.assertAlmostEqual(1.25e-06, tmetadata[model.MD_PIXEL_SIZE][1], places=6) # self.assertAlmostEqual(0.085, tmetadata[model.MD_ROTATION], places=2) # self.assertAlmostEqual(0.000166, tmetadata[model.MD_POS][0], places=5) # self.assertAlmostEqual(-0.0001435, tmetadata[model.MD_POS][1], places=5) # self.assertAlmostEqual(0.035, tmetadata[model.MD_SHEAR], places=2) # # Check that calling the function again with the same data returns the # same results (bug happens when using FLANN-KDtree matcher) for i in range(2): tmatn, _, _, _, _ = keypoint.FindTransform(tem_img, sem_img) tmetadatan = get_img_transformation_md(tmatn, tem_img, sem_img) logging.debug("Computed metadata = %s", tmetadatan) numpy.testing.assert_equal(tmatn, tmat) self.assertEqual(tmetadatan, tmetadata)
def test_synthetic_images(self): ''' Testing the matching of a synthetic image. The image is generated with a rotation and scale, and then it checks if the matching algorithm came up with the same result ''' # generate a syntyetic image image = numpy.zeros((1000, 1000, 4), dtype=numpy.uint8) surface = cairo.ImageSurface.create_for_data(image, cairo.FORMAT_ARGB32, 1000, 1000) cr = cairo.Context(surface) cr.set_source_rgb(1.0, 1.0, 1.0) cr.paint() cr.set_source_rgb(0.0, 0.0, 0.0) # draw circles cr.arc(200, 150, 80, 0, 2 * math.pi) cr.fill() cr.arc(400, 150, 70, 0, 2 * math.pi) cr.fill() cr.arc(700, 180, 50, 0, 2 * math.pi) cr.fill() cr.arc(200, 500, 80, 0, 2 * math.pi) cr.fill() cr.arc(400, 600, 70, 0, 2 * math.pi) cr.fill() cr.arc(600, 500, 50, 0, 2 * math.pi) cr.fill() cr.arc(600, 500, 50, 0, 2 * math.pi) cr.fill() cr.arc(500, 500, 350, 0, 2 * math.pi) cr.set_line_width(5) cr.stroke() cr.arc(600, 500, 50, 0, 2 * math.pi) cr.fill() # center circle cr.arc(500, 500, 5, 0, 2 * math.pi) cr.fill() # rectangle cr.rectangle(600, 700, 200, 100) cr.fill() image = image[:, :, 0] angle = 0.3 scale = 0.7 translation_x = 100 translation_y = 50 # generate a rotation/scale matrix, with the rotation centered on the center of the image rot_scale_mat = cv2.getRotationMatrix2D((500.0, 500.0), math.degrees(angle), scale) # generate the transformed image with scale and rotation timg = cv2.warpAffine(image, rot_scale_mat, (1000, 1000), borderMode=cv2.BORDER_CONSTANT, borderValue=(255, 255, 255)) # generate a transformation matrix with translation translation_mat = numpy.float32([[1, 0, translation_x], [0, 1, translation_y]]) # generate the transformed image with translation timg = cv2.warpAffine(timg, translation_mat, (1000, 1000), borderMode=cv2.BORDER_CONSTANT, borderValue=(255, 255, 255)) image = preprocess(image, False, (False, False), (0, 0, 0, 0), 0, True) timg = preprocess(timg, False, (False, False), (0, 0, 0, 0), 0, True) # execute the matching algorithm, and find the transformation matrix between the original # and the transformed image tmat_odemis, _, _, _, _ = keypoint.FindTransform(timg, image) timg_md = {} timg = model.DataArray(timg, timg_md) image_md = { model.MD_PIXEL_SIZE: (1e-6, 1e-6), model.MD_POS: (35e-6, 25e-6), model.MD_ROTATION: 0.15, model.MD_SHEAR: 0.15 } image = model.DataArray(image, image_md) # use the invert matrix to get the original values tmetadata = get_img_transformation_md(inv(tmat_odemis), timg, image) logging.debug("Computed metadata = %s", tmetadata) # the matching algorithm is not that accurate, so the values are approximated self.assertAlmostEqual(0.7e-6, tmetadata[model.MD_PIXEL_SIZE][0], places=7) self.assertAlmostEqual(0.7e-6, tmetadata[model.MD_PIXEL_SIZE][1], places=7) # 0.3 + 0.15 self.assertAlmostEqual(0.45, tmetadata[model.MD_ROTATION], places=1) # (100 + 35) * PS self.assertAlmostEqual(135e-06, tmetadata[model.MD_POS][0], places=5) # (-50 + 25) * PS self.assertAlmostEqual(-25e-06, tmetadata[model.MD_POS][1], places=5) # 0.0 (there's no shear on the image) + 0.15 self.assertAlmostEqual(0.15, tmetadata[model.MD_SHEAR], places=1) # uncomment this if you want to see the images used on this test '''
def test_image_pair(self): ''' Testing a pair of images ''' # WARNING: if opencv is not compiled with SIFT support (ie, only ORB # available), then this test case will fail. # FIXME: these two images are very hard, and any tiny change in the # algorithm or settings can cause the alignment to fail => not a good # test case # only one image will be used, but this structure helps to test # different images image_pairs = [ ( ('Slice69_stretched.tif', True, (False, True), (0, 0, 0, 0), 6), ('g_009_cropped.tif', False, (False, False), (0, 0, 0, 0), 3) ), # ( # ('001_CBS_010.tif', False, (False, False), (0, 0, 0, 0), 0), # ('20141014-113042_1.tif', False, (False, False), (0, 0, 0, 0), 0) # ), # ( # ('t3 DELPHI.tiff', False, (False, False), (0, 200, 0, 0), 3), # ('t3 testoutA3.tif', False, (False, False), (0, 420, 0, 0), 3) # ) ] image_pair = image_pairs[0] # open the images tem_img = open_acquisition(os.path.join(IMG_PATH, image_pair[0][0]))[0].getData() sem_img = open_acquisition(os.path.join(IMG_PATH, image_pair[1][0]))[0].getData() # preprocess tem_img = preprocess(tem_img, image_pair[0][1], image_pair[0][2], image_pair[0][3], image_pair[0][4], True) sem_img = preprocess(sem_img, image_pair[1][1], image_pair[1][2], image_pair[1][3], image_pair[1][4], True) # execute the algorithm to find the transform between the images try: tmat, _, _, _, _ = keypoint.FindTransform(tem_img, sem_img) except ValueError: if not hasattr(cv2, 'SIFT') and not hasattr(cv2, 'SIFT_create'): self.skipTest("Test only works with SIFT, not with ORB.") else: raise AssertionError("Failed to find transform between images.") # uncomment this if you want to see the keypoint images '''tem_painted_kp = cv2.drawKeypoints(tem_img, tem_kp, None, color=(0,255,0), flags=0) sem_painted_kp = cv2.drawKeypoints(sem_img, sem_kp, None, color=(0,255,0), flags=0) cv2.imwrite(IMG_PATH + 'tem_kp.jpg', tem_painted_kp) cv2.imwrite(IMG_PATH + 'sem_kp.jpg', sem_painted_kp)''' # uncomment this if you want to see the warped image '''warped_im = cv2.warpPerspective(tem_img, tmat, (sem_img.shape[1], sem_img.shape[0])) merged_im = cv2.addWeighted(sem_img, 0.5, warped_im, 0.5, 0.0) cv2.imwrite(IMG_PATH + 'merged_with_warped.jpg', merged_im)''' tmetadata = get_img_transformation_md(tmat, tem_img, sem_img) logging.debug("Computed metadata = %s", tmetadata) # FIXME: these values are actually pretty bad # comparing based on a successful alignment validated from the warped image # self.assertAlmostEqual(8.7e-07, tmetadata[model.MD_PIXEL_SIZE][0], places=6) # self.assertAlmostEqual(1.25e-06, tmetadata[model.MD_PIXEL_SIZE][1], places=6) # self.assertAlmostEqual(0.085, tmetadata[model.MD_ROTATION], places=2) # self.assertAlmostEqual(0.000166, tmetadata[model.MD_POS][0], places=5) # self.assertAlmostEqual(-0.0001435, tmetadata[model.MD_POS][1], places=5) # self.assertAlmostEqual(0.035, tmetadata[model.MD_SHEAR], places=2) # # Check that calling the function again with the same data returns the # same results (bug happens when using FLANN-KDtree matcher) for i in range(2): try: tmatn, _, _, _, _ = keypoint.FindTransform(tem_img, sem_img) except ValueError: if not hasattr(cv2, 'SIFT') and not hasattr(cv2, 'SIFT_create'): self.skipTest("Test only works with SIFT, not with ORB.") else: raise AssertionError("Failed to find transform between images.") tmetadatan = get_img_transformation_md(tmatn, tem_img, sem_img) logging.debug("Computed metadata = %s", tmetadatan) numpy.testing.assert_equal(tmatn, tmat) self.assertEqual(tmetadatan, tmetadata)