예제 #1
0
파일: deep_model.py 프로젝트: imito/odin
 def __init__(self, network,
              l1=0., l2=0., confusion_matrix=True,
              tol=1e-4, patience=3, rollback=True,
              batch_size=256, max_epoch=100, max_iter=None,
              optimizer='adadelta', learning_rate=1.0, class_weights=None,
              dtype='float32', seed=5218, verbose=False,
              path=None, name=None):
   super(NeuralNetworkClassifier, self).__init__()
   if not isinstance(network, N.NNOp):
     raise ValueError("`network` must be instance of odin.nnet.NNOp")
   self._network = network
   self._input_shape = None
   self._output_shape = None
   self._nb_classes = None
   self._dtype = np.dtype(dtype)
   self._class_weights = class_weights
   # ====== flags ====== #
   self.l1 = float(l1)
   self.l2 = float(l2)
   self.confusion_matrix = bool(confusion_matrix)
   # ====== stop training ====== #
   self.tol = float(tol)
   self.patience = int(patience)
   self.rollback = bool(rollback)
   # ====== others ====== #
   self._train_history = []
   self._valid_history = []
   self._rand_state = np.random.RandomState(seed=int(seed))
   self.verbose = int(verbose)
   # ====== others ====== #
   if name is None:
     name = self.__class__.__name__ + uuid()
   self._name = str(name)
   self._path = path
예제 #2
0
 def __init__(self, sr):
   verify_dependencies()
   super(_openSMILEbase, self).__init__()
   self._id = uuid(length=25)
   self.sr = sr
   self._first_config_generated = False
   self._conf = _get_conf_file('%s.cfg' % self.__class__.__name__)
   self._log_level = -1
예제 #3
0
파일: base.py 프로젝트: liqin123/odin
    def __init__(self, name=None, **kwargs):
        super(NNOps, self).__init__()
        self._arguments = {}

        self.name = name
        if name is None:
            self.name = "%s_%s" % (self.__class__.__name__, uuid())

        self._configuration = None
        self._transpose_ops = None
예제 #4
0
파일: init.py 프로젝트: liqin123/odin
def rnn(input_dim,
        hidden_dim,
        W_init=glorot_uniform,
        b_init=constant(0.),
        bidirectional=False,
        one_vector=False,
        return_variable=True,
        name=None):
    """ Fast initalize all Standard RNN weights

    Parameters
    ----------
    one_vector: bool
        if True, all the weights are flatten and concatenated into 1 big vector
    return_variable: bool
        if False, only return the numpy array
    bidirectional: bool
        if True, return parameters for both forward and backward RNN

    Return
    ------
    [W_i, b_wi, R_h, b_wh]

    """
    if name is None: name = uuid()

    def init():
        W_i = W_init((input_dim, hidden_dim))
        b_wi = b_init((hidden_dim))
        R_h = W_init((hidden_dim, hidden_dim))
        b_wh = b_init((hidden_dim))
        return [W_i, b_wi, R_h, b_wh]

    params = init() + init() if bidirectional else init()
    roles = [WEIGHT, BIAS]
    if one_vector:
        params = [np.concatenate([p.flatten() for p in params])]
        roles = [PARAMETER]
    # names
    if one_vector:
        names = [name + '_rnn']
    else:
        names = ["_W_i", "_b_wi", "_R_h", "_b_wh"]
        if bidirectional:
            names = [i + '_fw' for i in names] + [i + '_bw' for i in names]
        names = [name + i for i in names]
    # create variable or not
    if return_variable:
        params = [variable(p, name=n) for p, n in zip(params, names)]
        for i, p in enumerate(params):
            add_role(p, roles[i % 2])
    return params if len(params) > 1 else params[0]
예제 #5
0
 def __init__(self,
              network,
              l1=0.,
              l2=0.,
              confusion_matrix=True,
              tol=1e-4,
              patience=3,
              rollback=True,
              batch_size=256,
              max_epoch=100,
              max_iter=None,
              optimizer='adadelta',
              learning_rate=1.0,
              class_weights=None,
              dtype='float32',
              seed=5218,
              verbose=False,
              path=None,
              name=None):
     super(NeuralNetworkClassifier, self).__init__()
     if not isinstance(network, N.NNOp):
         raise ValueError("`network` must be instance of odin.nnet.NNOp")
     self._network = network
     self._input_shape = None
     self._output_shape = None
     self._nb_classes = None
     self._dtype = np.dtype(dtype)
     self._class_weights = class_weights
     # ====== flags ====== #
     self.l1 = float(l1)
     self.l2 = float(l2)
     self.confusion_matrix = bool(confusion_matrix)
     # ====== stop training ====== #
     self.tol = float(tol)
     self.patience = int(patience)
     self.rollback = bool(rollback)
     # ====== others ====== #
     self._train_history = []
     self._valid_history = []
     self._rand_state = np.random.RandomState(seed=int(seed))
     self.verbose = int(verbose)
     # ====== others ====== #
     if name is None:
         name = self.__class__.__name__ + uuid()
     self._name = str(name)
     self._path = path
예제 #6
0
def lstm_batch_norm(num_units,
                    W_input_init=K.init.glorot_uniform,
                    W_hidden_init=K.init.orthogonal,
                    W_peephole_init=K.init.glorot_uniform,
                    activation=K.tanh, gate_activation=K.sigmoid,
                    tied_input=False, batch_norm=True, name=None):
    if name is None:
        name = 'lstm_batch_norm_%s' % utils.uuid()
    # ====== create input_gates ====== #
    ops_list = []
    bias = None if batch_norm else K.init.constant(0)
    if tied_input:
        input_gates = Dense(num_units, W_init=W_input_init, b_init=bias,
                            activation=K.linear, name='%s_gates' % name)
    else:
        input_gates = Merge([
            Dense(num_units, W_init=W_input_init, b_init=bias, activation=K.linear,
                  name='%s_ingate' % name), # input-gate
            Dense(num_units, W_init=W_input_init, b_init=bias, activation=K.linear,
                  name='%s_forgetgate' % name), # forget-gate
            Dense(num_units, W_init=W_input_init, b_init=bias, activation=K.linear,
                  name='%s_cellupdate' % name), # cell-update
            Dense(num_units, W_init=W_input_init, b_init=bias, activation=K.linear,
                  name='%s_outgate' % name) # output-gate
        ], merge_function=K.concatenate)
    ops_list.append(input_gates)
    # ====== batch_norm ====== #
    # normalize batch and time dimension
    if batch_norm:
        ops_list.append(BatchNorm(axes=(0, 1), name='%s_norm' % name))
    # ====== add LSTM ====== #
    ops_list.append(LSTM(num_units=num_units,
                         activation=activation,
                         gate_activation=gate_activation,
                         W_init=W_hidden_init,
                         W_peepholes=W_peephole_init,
                         name='%s_lstm' % name))
    return Sequence(ops_list, name=name)
예제 #7
0
  def __init__(self, lr, decay_steps=None, decay_rate=0.96, staircase=True,
               clipnorm=None, clipvalue=None, clip_alg='total_norm',
               name=None):
    if name is None:
      name = self.__class__.__name__ + '_' + str(uuid(length=4))
    elif not isinstance(name, string_types):
      name = str(name)
    self._name = str(name)
    self.staircase = bool(staircase)
    with tf.variable_scope(self._name):
      self._lr = _as_variable(lr, name='learning_rate', roles=LearningRate)
      self._lr_decay = None
      self._step = tf.Variable(0., dtype=floatX,
          name="%s_step" % self.__class__.__name__)
      self.decay_steps = decay_steps
      self.decay_rate = decay_rate

      if clipnorm is not None:
        if (clipnorm if is_number(clipnorm) else get_value(clipnorm)) <= 0:
          raise ValueError('`clipnorm` value must greater than 0.')
      self.clipnorm = _as_variable(clipnorm, name="clip_norm",
          roles=GraidentsClippingNorm)

      if clipvalue is not None:
        if (clipvalue if is_number(clipvalue) else get_value(clipvalue)) <= 0:
          raise ValueError('`clipvalue` value must greater than 0.')
      self.clipvalue = _as_variable(clipvalue, name="clip_value",
          roles=GraidentsClippingValue)
    # ====== internal states values ====== #
    clip_alg = str(clip_alg).strip().lower()
    if clip_alg not in ('total_norm', 'norm', 'avg_norm'):
      raise ValueError("clip_arg must be one of the following: "
          "'norm', 'total_norm', 'avg_norm'")
    self._norm = 0.
    self.clip_alg = clip_alg
    self._algorithm = None
    self._is_initialized = False
예제 #8
0
파일: tensor.py 프로젝트: liqin123/odin
def rnn_dnn(X,
            hidden_size,
            rnn_mode,
            num_layers=1,
            parameters=None,
            h0=None,
            c0=None,
            input_mode='linear',
            direction_mode='unidirectional',
            dropout=0.,
            name=None):
    """CuDNN v5 RNN implementation.

    Parameters
    ----------
    X : input varialbe or placeholder
        shape=(batch_size, timesteps, input_dims)
    hidden_size : int
        the number of units within the RNN model.
    rnn_mode : {'rnn_relu', 'rnn_tanh', 'lstm', 'gru'}
        See cudnn documentation for ``cudnnRNNMode_t``.
    num_layers : int
        the number of layers for the RNN model.
    h0: tensor
        h0 with shape [num_layers, batch_size, hidden_size]
    c0: tensor
        c0 (lstm) with shape [num_layers, batch_size, hidden_size]
    parameters: vector
        vector contain all flatten weights and bias
        check `backend.init.lstm`, `backend.init.gru`, and `backend.init.rnn`
        for more information
    input_mode : {'linear', 'skip'}
        linear: input will be multiplied by a biased matrix
        skip: No operation is performed on the input.  The size must
        match the hidden size.
        (CuDNN docs: cudnnRNNInputMode_t)
    direction_mode : {'unidirectional', 'bidirectional'}
        unidirectional: The network operates recurrently from the
                        first input to the last.
        bidirectional: The network operates from first to last then from last
                       to first and concatenates the results at each layer.
    dropout: float (0.0-1.0)
        whether to enable dropout. With it is 0, dropout is disabled.

    Returns
    -------
    [output, hidden_states, cell_states] for lstm
    [output, hidden_states] for gru and rnn

    output_shape: (batch_size, timesteps, hidden_size)
    hidden_shape: (num_layers, batch_size, hidden_size)
    cell_shape: (num_layers, batch_size, hidden_size)

    Note
    ----
    dropout is turn off if K.set_training(False) or K.is_training() == False

    """
    if CONFIG['device'] == 'cpu':
        raise Exception('This opt is not supported with CPU.')
    if name is None: name = uuid()
    # ====== Check arguments ====== #
    if rnn_mode not in ('rnn_relu', 'rnn_tanh', 'lstm', 'gru'):
        raise ValueError(
            "rnn_mode=%s must be: 'rnn_relu', 'rnn_tanh', 'lstm', 'gru'" %
            rnn_mode)
    if input_mode not in ('linear', 'skip'):
        raise ValueError("input_mode=%s must be: 'linear', 'skip'" %
                         input_mode)
    input_mode = 'linear_input' if input_mode == 'linear' else 'skip_input'
    if direction_mode not in ('unidirectional', 'bidirectional'):
        raise ValueError(
            "direction_mode=%s must be: 'unidirectional', 'bidirectional'" %
            direction_mode)
    is_bidirectional = direction_mode == 'bidirectional'

    # ====== helper function ====== #
    def check_init_states(s0, nb_layers, batch_size):
        if s0 is None: return None
        if s0.get_shape().ndims < 3:
            s0 = expand_dims(s0, dim=0)
        s0shape = get_shape(s0)
        if s0shape[0] == 1 and s0shape[0] != nb_layers:
            s0 = repeat(s0, n=nb_layers, axes=0)
        if s0shape[1] == 1:
            s0 = repeat(s0, n=batch_size, axes=1)
        return s0

    # ====== create RNNBlock ====== #
    from tensorflow.contrib import cudnn_rnn
    input_shape = get_shape(X)
    if X.get_shape().ndims != 3:
        raise ValueError('Input must be 3-D tensor, but X is %d-D tensor' %
                         X.ndim)
    if input_shape[-1] != hidden_size and 'skip' in input_mode:
        raise ValueError(
            'In skip_input mode, input size must be equal to hidden size'
            ', but input_size=%d != hidden_size=%d' %
            (input_shape[-1], hidden_size))
    # IF we dimshuffle here, a lot of error concern GPUarray,
    # and cudnn will happen
    batch_size = get_shape(X, native=True)[0]
    if rnn_mode == 'lstm':
        rnn = cudnn_rnn.CudnnLSTM(num_layers=num_layers,
                                  num_units=hidden_size,
                                  input_size=input_shape[-1],
                                  input_mode=input_mode,
                                  direction=direction_mode,
                                  dropout=dropout,
                                  seed=0,
                                  seed2=0)
    else:
        if rnn_mode == 'gru':
            rnn_class = cudnn_rnn.CudnnGRU
        elif rnn_mode == 'rnn_relu':
            rnn_class = cudnn_rnn.CudnnRNNRelu
        elif rnn_mode == 'rnn_tanh':
            rnn_class = cudnn_rnn.CudnnRNNTanh
        rnn = rnn_class(num_layers=num_layers,
                        num_units=hidden_size,
                        input_size=input_shape[-1],
                        input_mode=input_mode,
                        direction=direction_mode,
                        dropout=dropout,
                        seed=0,
                        seed2=0)
    # layer info (note in case of bidirectional, output from previous
    # layers are concatenated).
    layer_info = [input_shape[-1], hidden_size] + \
                 [hidden_size * (2 if is_bidirectional else 1),
                  hidden_size] * (num_layers - 1)
    with tf.device('/cpu:0'):
        nb_params = rnn.params_size().eval(session=get_session())
    # ====== create parameters ====== #
    # check parameters
    if parameters is None:
        if rnn_mode == 'lstm':
            from odin.backend.init import lstm as init_func
        elif rnn_mode == 'gru':
            from odin.backend.init import gru as init_func
        else:
            from odin.backend.init import rnn as init_func
        parameters = np.concatenate([
            init_func(layer_info[i * 2],
                      layer_info[i * 2 + 1],
                      one_vector=True,
                      return_variable=False,
                      bidirectional=True if is_bidirectional else False)
            for i in range(num_layers)
        ]).astype(FLOATX)
        parameters = variable(parameters, name=name)
    assert nb_params == get_shape(parameters)[0], \
        "Require %d parameters but only %d provided" % (nb_params, get_shape(parameters)[0])
    # check initial states
    num_layers = num_layers * 2 if is_bidirectional else num_layers
    h0 = zeros((num_layers, batch_size, hidden_size)) if h0 is None else h0
    h0 = check_init_states(h0, num_layers, batch_size)
    c0 = (zeros((num_layers, batch_size,
                 hidden_size)) if rnn_mode == 'lstm' and c0 is None else c0)
    c0 = check_init_states(c0, num_layers, batch_size)
    # preprocess arguments
    args = {'input_h': h0}
    if rnn_mode == 'lstm':
        args['input_c'] = c0
    # ====== get output ====== #
    output = rnn(input_data=tf.transpose(X, (1, 0, 2)),
                 params=parameters,
                 is_training=bool(is_training()),
                 **args)
    output = [tf.transpose(output[0], (1, 0, 2))] + list(output[1:])
    add_shape(output[0], (input_shape[0], input_shape[1], hidden_size *
                          (2 if is_bidirectional else 1)))
    for o in output[1:]:
        add_shape(o, (num_layers, input_shape[0], hidden_size))
    return output
예제 #9
0
파일: init.py 프로젝트: liqin123/odin
def lstm(input_dim,
         hidden_dim,
         W_init=glorot_uniform,
         b_init=constant(0.),
         bidirectional=False,
         one_vector=False,
         return_variable=True,
         name=None):
    """ Fast initalize all Standard LSTM weights (without peephole connection)

    Parameters
    ----------
    one_vector: bool
        if True, all the weights are flatten and concatenated into 1 big vector
    return_variable: bool
        if False, only return the numpy array
    bidirectional: bool
        if True, return parameters for both forward and backward RNN

    Return
    ------
    [W_i, b_wi, W_f, b_wf, W_c, b_wc, W_o, b_wo,
     R_i, b_ri, R_f, b_rf, R_c, b_rc, R_o, b_ro]

    """
    if name is None: name = uuid()

    def init():
        # input to hidden
        W_i = W_init((input_dim, hidden_dim))
        b_wi = b_init((hidden_dim))
        W_f = W_init((input_dim, hidden_dim))
        b_wf = b_init((hidden_dim))
        W_c = W_init((input_dim, hidden_dim))
        b_wc = b_init((hidden_dim))
        W_o = W_init((input_dim, hidden_dim))
        b_wo = b_init((hidden_dim))
        # hidden to hidden
        R_i = W_init((hidden_dim, hidden_dim))
        b_ri = b_init((hidden_dim))
        R_f = W_init((hidden_dim, hidden_dim))
        b_rf = b_init((hidden_dim))
        R_c = W_init((hidden_dim, hidden_dim))
        b_rc = b_init((hidden_dim))
        R_o = W_init((hidden_dim, hidden_dim))
        b_ro = b_init((hidden_dim))
        return [
            W_i, b_wi, W_f, b_wf, W_c, b_wc, W_o, b_wo, R_i, b_ri, R_f, b_rf,
            R_c, b_rc, R_o, b_ro
        ]

    params = init() + init() if bidirectional else init()
    roles = [WEIGHT, BIAS]
    if one_vector:
        params = [np.concatenate([p.flatten() for p in params])]
        roles = [PARAMETER]
    # names
    if one_vector:
        names = [name + '_lstm']
    else:
        names = [
            "_W_i", "_b_wi", "_W_f", "_b_wf", "_W_c", "_b_wc", "_W_o", "_b_wo",
            "_R_i", "_b_ri", "_R_f", "_b_rf", "_R_c", "_b_rc", "_R_o", "_b_ro"
        ]
        if bidirectional:
            names = [i + '_fw' for i in names] + [i + '_bw' for i in names]
        names = [name + i for i in names]
    # create variable or not
    if return_variable:
        params = [variable(p, name=n) for p, n in zip(params, names)]
        for i, p in enumerate(params):
            add_role(p, roles[i % 2])
    return params if len(params) > 1 else params[0]
예제 #10
0
파일: ivector.py 프로젝트: imito/odin
  def transform(self, X, indices=None, sad=None,
                save_ivecs=False, keep_stats=False, name=None):
    """
    Parameters
    ----------
    X : ndarray
      Training data [n_samples, n_features]
    indices : {Mapping, tuple, list}
      in case the data is given by a list of files, `indices`
      act as file indicator mapping from
      'file_name' -> (start_index_in_X, end_index_in_X)
      This mapping can be provided by a dictionary, or list of
      tuple.
    sad : ndarray
      inspired by the "Speech Activity Detection" (SAD) indexing,
      this array is indicator of which samples will be taken into
      training; the shape should be [n_samples,] or [n_samples, 1]
    save_ivecs : bool
      if True, save extracted i-vectors to disk at path `ivec_[name]`
      if False, return directly the i-vectors without saving

    keep_stats : bool
      if True, keep the zero and first order statistics.
      The first order statistics could consume huge amount
      of disk space. Otherwise, they are deleted after training
    name : {None, str}
      identity of the i-vectors (for re-using in future).
      If None, a random name is used
    """
    if not self.is_fitted:
      raise ValueError("Ivector has not been fitted, call Ivector.fit(...) first")
    n_files = X.shape[0] if indices is None else len(indices)
    if name is None:
      name = uuid(length=8)
    else:
      name = str(name)
    # ====== init ====== #
    z_path = self.get_z_path(name)
    f_path = self.get_f_path(name)
    if save_ivecs:
      i_path = self.get_i_path(name)
    else:
      i_path = None
    name_path = self.get_name_path(name)
    # ====== check exist i-vector file ====== #
    if i_path is not None and os.path.exists(i_path):
      ivec = MmapData(path=i_path, read_only=True)
      assert ivec.shape[0] == n_files and ivec.shape[1] == self.tv_dim,\
      "Need i-vectors for %d files, found exists data at path:'%s' with shape:%s" % \
      (n_files, i_path, ivec.shape)
      return ivec
    # ====== extract Z and F ====== #
    if os.path.exists(z_path) and os.path.exists(f_path):
      pass
    else:
      if os.path.exists(z_path):
        os.remove(z_path)
      if os.path.exists(f_path):
        os.remove(f_path)
      if os.path.exists(name_path):
        os.remove(name_path)
      _extract_zero_and_first_stats(X=X, sad=sad, indices=indices, gmm=self.gmm,
                                    z_path=z_path, f_path=f_path, name_path=name_path)
    Z = MmapData(path=z_path, read_only=True)
    F = MmapData(path=f_path, read_only=True)
    # ====== extract I-vec ====== #
    ivec = self.tmat.transform_to_disk(path=i_path, Z=Z, F=F, dtype='float32')
    # ====== clean ====== #
    Z.close()
    F.close()
    if not keep_stats:
      if os.path.exists(z_path):
        os.remove(z_path)
      if os.path.exists(f_path):
        os.remove(f_path)
    else:
      print("Zero-order stats saved at:", ctext(z_path, 'cyan'))
      print("First-order stats saved at:", ctext(f_path, 'cyan'))
    return ivec
예제 #11
0
    def transform(self,
                  X,
                  indices=None,
                  sad=None,
                  save_ivecs=False,
                  keep_stats=False,
                  name=None):
        """
    Parameters
    ----------
    X : ndarray
      Training data [n_samples, n_features]
    indices : {Mapping, tuple, list}
      in case the data is given by a list of files, `indices`
      act as file indicator mapping from
      'file_name' -> (start_index_in_X, end_index_in_X)
      This mapping can be provided by a dictionary, or list of
      tuple.
    sad : ndarray
      inspired by the "Speech Activity Detection" (SAD) indexing,
      this array is indicator of which samples will be taken into
      training; the shape should be [n_samples,] or [n_samples, 1]
    save_ivecs : bool
      if True, save extracted i-vectors to disk at path `ivec_[name]`
      if False, return directly the i-vectors without saving

    keep_stats : bool
      if True, keep the zero and first order statistics.
      The first order statistics could consume huge amount
      of disk space. Otherwise, they are deleted after training
    name : {None, str}
      identity of the i-vectors (for re-using in future).
      If None, a random name is used
    """
        if not self.is_fitted:
            raise ValueError(
                "Ivector has not been fitted, call Ivector.fit(...) first")
        n_files = X.shape[0] if indices is None else len(indices)
        if name is None:
            name = uuid(length=8)
        else:
            name = str(name)
        # ====== init ====== #
        z_path = self.get_z_path(name)
        f_path = self.get_f_path(name)
        if save_ivecs:
            i_path = self.get_i_path(name)
        else:
            i_path = None
        name_path = self.get_name_path(name)
        # ====== check exist i-vector file ====== #
        if i_path is not None and os.path.exists(i_path):
            ivec = MmapArray(path=i_path)
            assert ivec.shape[0] == n_files and ivec.shape[1] == self.tv_dim,\
            "Need i-vectors for %d files, found exists data at path:'%s' with shape:%s" % \
            (n_files, i_path, ivec.shape)
            return ivec
        # ====== extract Z and F ====== #
        if os.path.exists(z_path) and os.path.exists(f_path):
            pass
        else:
            if os.path.exists(z_path):
                os.remove(z_path)
            if os.path.exists(f_path):
                os.remove(f_path)
            if os.path.exists(name_path):
                os.remove(name_path)
            _extract_zero_and_first_stats(X=X,
                                          sad=sad,
                                          indices=indices,
                                          gmm=self.gmm,
                                          z_path=z_path,
                                          f_path=f_path,
                                          name_path=name_path)
        Z = MmapArray(path=z_path)
        F = MmapArray(path=f_path)
        # ====== extract I-vec ====== #
        ivec = self.tmat.transform_to_disk(path=i_path,
                                           Z=Z,
                                           F=F,
                                           dtype='float32')
        # ====== clean ====== #
        Z.close()
        F.close()
        if not keep_stats:
            if os.path.exists(z_path):
                os.remove(z_path)
            if os.path.exists(f_path):
                os.remove(f_path)
        else:
            print("Zero-order stats saved at:", ctext(z_path, 'cyan'))
            print("First-order stats saved at:", ctext(f_path, 'cyan'))
        return ivec
예제 #12
0
파일: __init__.py 프로젝트: imito/odin
def serialize(nnops, path=None, save_variables=True, variables=[],
              binary_output=False, override=False):
  """ Serialize NNOp or list of NNOp and all necessary variables
  to a folder.

  Parameters
  ----------
  nnops: NNOp, Object, or list; tuple of NNOp and Object
  path: str
      path to a folder
  save_variables: bool
      if True, save all variables related to all given NNOps
  variables: list of tensorflow Variables
      additional list of variables to be saved with this model
  binary_output: bool (default: False)
      if `False` (by default), original way tensorflow serialize
      all variables, save all variables and nnop info to separated
      files within a folder `path`
      if `True`, convert all files in the folder to binary
      and save to a dictionary with its relative path, if
      `path` is not None, use pickle to save all binary data
      to a file
  override: bool
      if True, remove existed folder to override everything.

  Return
  ------
  path: str
      path to the folder that store NNOps and variables
  """
  # ====== check output_mode ====== #
  if path is None and not binary_output:
    raise ValueError('`path` cannot be None if `binary_output=False`')
  is_path_given = False if path is None else True
  if path is None:
    path = '/tmp/tmp' # default path
  path_folder = path + uuid(length=25) if binary_output else path
  # ====== getting save data and variables ====== #
  vars = []
  if save_variables:
    for op in as_tuple(nnops):
      if hasattr(op, 'variables'):
        for v in as_tuple(op.variables):
          if K.is_variable(v):
            vars.append(v)
  vars = list(set(vars + as_list(variables)))
  # ====== checking path ====== #
  # It is important to remove the `path_folder` AFTER getting all
  # the variables, since this can remove the path to restored
  # variables required in `op.variables`
  if os.path.exists(path_folder):
    if os.path.isfile(path_folder):
      raise ValueError("path: '%s' is NOT a folder." % path_folder)
    elif override:
      shutil.rmtree(path_folder)
      os.mkdir(path_folder)
  else:
    os.mkdir(path_folder)
  nnops_path = os.path.join(path_folder, 'nnops.ai')
  vars_path = os.path.join(path_folder, 'variables')
  # save NNOps
  with open(nnops_path, 'wb') as f:
    cPickle.dump(nnops, f, protocol=cPickle.HIGHEST_PROTOCOL)
  # save Variables
  if len(vars) > 0:
    K.save_variables(vars, vars_path)
  # ====== convert folder to file or binary ====== #
  if binary_output:
    data = folder2bin(path_folder)
    # only return binary data
    if not is_path_given:
      shutil.rmtree(path_folder)
      return data
    # given path, save binary to path
    # check if override
    if os.path.exists(path):
      if override:
        if os.path.isfile(path):
          os.remove(path)
        else:
          shutil.rmtree(path)
      else:
        raise RuntimeError("File at path: %s exists, cannot override." % path)
    # write file
    with open(path, 'wb') as f:
      cPickle.dump(data, f, protocol=cPickle.HIGHEST_PROTOCOL)
    shutil.rmtree(path_folder)
  return path
예제 #13
0
파일: __init__.py 프로젝트: imito/odin
def deserialize(path_or_data, force_restore_vars=True):
  """
  Parameters
  ----------
  path_or_data : {string, dict}
      if a path is given (i.e. string types), load dumped model from
      given folder
      if a dictionary is given, load binary data directly

  force_restore_vars : bool (default=True)
      if `False`, this is special tricks, the unpickled NNOp stay useless
      until its variables are restored,
      but if we restore the variables right away, it create a
      session and prevent any possibility of running
      tensorflow with multiprocessing
      => store the `_restore_vars_path` in NNOp for later,
      and restore the variable when the NNOp is actually in used.

  Note
  ----
  if `force_restore_vars = False`, this create 1 flaw,
  if the nested NNOp is called before the unpickled NNOp
  restore its variables, the nested Ops cannot acquire its
  variables.

  """
  data = None
  path_folder = '/tmp/tmp_%s' % uuid(12)
  delete_after = True
  # ====== check path ====== #
  if is_string(path_or_data):
    # path to a file
    if os.path.isfile(path_or_data):
      with open(path_or_data, 'rb') as f:
        data = cPickle.load(f)
    # path to a folder
    elif os.path.isdir(path_or_data):
      path_folder = path_or_data
      delete_after = False
    else: # pickle string
      data = cPickle.loads(path_or_data)
  # given data
  elif isinstance(path_or_data, dict):
    data = path_or_data
  # ====== check data ====== #
  if data is not None:
    bin2folder(data, path=path_folder)
  path = path_folder
  # ====== read normally from folder ====== #
  nnops_path = os.path.join(path, 'nnops.ai')
  vars_path = os.path.join(path, 'variables')
  # ====== load the NNOps ====== #
  if not os.path.exists(nnops_path):
    raise ValueError("Cannot file path to serialized NNOps at: %s" % nnops_path)
  with open(nnops_path, 'rb') as f:
    nnops = cPickle.load(f)
  # ====== load the Variables ====== #
  if os.path.exists(vars_path + '.index'):
    if force_restore_vars:
      K.restore_variables(vars_path)
      # delete cached folder
      if delete_after:
        shutil.rmtree(path)
    else:
      nnops._set_restore_info(vars_path, delete_after)
  return nnops
예제 #14
0
파일: linear_model.py 프로젝트: imito/odin
 def __init__(self, nb_classes, l1=0., l2=0.,
              fit_intercept=True, confusion_matrix=True,
              tol=1e-4, patience=3, rollback=True,
              batch_size=1024, max_epoch=100, max_iter=None,
              optimizer='adadelta', learning_rate=1.0, class_weight=None,
              dtype='float32', seed=5218,
              verbose=False, path=None, name=None):
   super(LogisticRegression, self).__init__()
   # ====== basic dimensions ====== #
   if isinstance(nb_classes, (tuple, list, np.ndarray)):
     self._labels = tuple([str(i) for i in nb_classes])
     self._nb_classes = len(nb_classes)
   elif is_number(nb_classes):
     self._labels = tuple([str(i) for i in range(nb_classes)])
     self._nb_classes = int(nb_classes)
   self._feat_dim = None
   self._dtype = np.dtype(dtype)
   # ====== preprocessing class weight ====== #
   if class_weight is None:
     class_weight = np.ones(shape=(self.nb_classes,),
                            dtype=self.dtype)
   elif is_number(class_weight):
     class_weight = np.zeros(shape=(self.nb_classes,),
                             dtype=self.dtype) + class_weight
   self._class_weight = class_weight
   # ====== flags ====== #
   self.l1 = float(l1)
   self.l2 = float(l2)
   self.fit_intercept = bool(fit_intercept)
   self.confusion_matrix = bool(confusion_matrix)
   # ====== internal states ====== #
   self._is_fitted = False
   # ====== others ====== #
   if name is None:
     name = uuid(length=8)
     self._name = 'LogisticRegression_%s' % name
   else:
     self._name = str(name)
   self._path = path
   # ====== training ====== #
   self.batch_size = int(batch_size)
   self.max_epoch = max_epoch
   self.max_iter = max_iter
   if not is_string(optimizer):
     raise ValueError("`optimizer` must be one of the following")
   optimizer = optimizer.lower()
   if optimizer not in _optimizer_list:
     raise ValueError("`optimizer` must be one of the following: %s" %
       str(list(_optimizer_list.keys())))
   self._optimizer = _optimizer_list[optimizer.lower()](lr=float(learning_rate))
   self._optimizer_name = optimizer
   self._optimizer_lr = learning_rate
   # ====== stop training ====== #
   self.tol = float(tol)
   self.patience = int(patience)
   self.rollback = bool(rollback)
   # ====== others ====== #
   self._train_history = []
   self._valid_history = []
   self._rand_state = np.random.RandomState(seed=int(seed))
   self.verbose = int(verbose)
예제 #15
0
def deserialize(path_or_data, force_restore_vars=True):
    """
  Parameters
  ----------
  path_or_data : {string, dict}
      if a path is given (i.e. string types), load dumped model from
      given folder
      if a dictionary is given, load binary data directly

  force_restore_vars : bool (default=True)
      if `False`, this is special tricks, the unpickled NNOp stay useless
      until its variables are restored,
      but if we restore the variables right away, it create a
      session and prevent any possibility of running
      tensorflow with multiprocessing
      => store the `_restore_vars_path` in NNOp for later,
      and restore the variable when the NNOp is actually in used.

  Note
  ----
  if `force_restore_vars = False`, this create 1 flaw,
  if the nested NNOp is called before the unpickled NNOp
  restore its variables, the nested Ops cannot acquire its
  variables.

  """
    data = None
    path_folder = '/tmp/tmp_%s' % uuid(12)
    delete_after = True
    # ====== check path ====== #
    if is_string(path_or_data):
        # path to a file
        if os.path.isfile(path_or_data):
            with open(path_or_data, 'rb') as f:
                data = cPickle.load(f)
        # path to a folder
        elif os.path.isdir(path_or_data):
            path_folder = path_or_data
            delete_after = False
        else:  # pickle string
            data = cPickle.loads(path_or_data)
    # given data
    elif isinstance(path_or_data, dict):
        data = path_or_data
    # ====== check data ====== #
    if data is not None:
        bin2folder(data, path=path_folder)
    path = path_folder
    # ====== read normally from folder ====== #
    nnops_path = os.path.join(path, 'nnops.ai')
    vars_path = os.path.join(path, 'variables')
    # ====== load the NNOps ====== #
    if not os.path.exists(nnops_path):
        raise ValueError("Cannot file path to serialized NNOps at: %s" %
                         nnops_path)
    with open(nnops_path, 'rb') as f:
        nnops = cPickle.load(f)
    # ====== load the Variables ====== #
    if os.path.exists(vars_path + '.index'):
        if force_restore_vars:
            K.restore_variables(vars_path)
            # delete cached folder
            if delete_after:
                shutil.rmtree(path)
        else:
            nnops._set_restore_info(vars_path, delete_after)
    return nnops
예제 #16
0
 def __init__(self,
              nb_classes,
              l1=0.,
              l2=0.,
              fit_intercept=True,
              confusion_matrix=True,
              tol=1e-4,
              patience=3,
              rollback=True,
              batch_size=1024,
              max_epoch=100,
              max_iter=None,
              optimizer='adadelta',
              learning_rate=1.0,
              class_weight=None,
              dtype='float32',
              seed=1234,
              verbose=False,
              path=None,
              name=None):
     super(LogisticRegression, self).__init__()
     # ====== basic dimensions ====== #
     if isinstance(nb_classes, (tuple, list, np.ndarray)):
         self._labels = tuple([str(i) for i in nb_classes])
         self._nb_classes = len(nb_classes)
     elif is_number(nb_classes):
         self._labels = tuple([str(i) for i in range(nb_classes)])
         self._nb_classes = int(nb_classes)
     self._feat_dim = None
     self._dtype = np.dtype(dtype)
     # ====== preprocessing class weight ====== #
     if class_weight is None:
         class_weight = np.ones(shape=(self.nb_classes, ), dtype=self.dtype)
     elif is_number(class_weight):
         class_weight = np.zeros(shape=(self.nb_classes, ),
                                 dtype=self.dtype) + class_weight
     self._class_weight = class_weight
     # ====== flags ====== #
     self.l1 = float(l1)
     self.l2 = float(l2)
     self.fit_intercept = bool(fit_intercept)
     self.confusion_matrix = bool(confusion_matrix)
     # ====== internal states ====== #
     self._is_fitted = False
     # ====== others ====== #
     if name is None:
         name = uuid(length=8)
         self._name = 'LogisticRegression_%s' % name
     else:
         self._name = str(name)
     self._path = path
     # ====== training ====== #
     self.batch_size = int(batch_size)
     self.max_epoch = max_epoch
     self.max_iter = max_iter
     if not is_string(optimizer):
         raise ValueError("`optimizer` must be one of the following")
     optimizer = optimizer.lower()
     if optimizer not in _optimizer_list:
         raise ValueError("`optimizer` must be one of the following: %s" %
                          str(list(_optimizer_list.keys())))
     self._optimizer = _optimizer_list[optimizer.lower()](
         lr=float(learning_rate))
     self._optimizer_name = optimizer
     self._optimizer_lr = learning_rate
     # ====== stop training ====== #
     self.tol = float(tol)
     self.patience = int(patience)
     self.rollback = bool(rollback)
     # ====== others ====== #
     self._train_history = []
     self._valid_history = []
     self._rand_state = np.random.RandomState(seed=int(seed))
     self.verbose = int(verbose)
예제 #17
0
def serialize(nnops,
              path=None,
              save_variables=True,
              variables=[],
              binary_output=False,
              override=False):
    """ Serialize NNOp or list of NNOp and all necessary variables
  to a folder.

  Parameters
  ----------
  nnops: NNOp, Object, or list; tuple of NNOp and Object
  path: str
      path to a folder
  save_variables: bool
      if True, save all variables related to all given NNOps
  variables: list of tensorflow Variables
      additional list of variables to be saved with this model
  binary_output: bool (default: False)
      if `False` (by default), original way tensorflow serialize
      all variables, save all variables and nnop info to separated
      files within a folder `path`
      if `True`, convert all files in the folder to binary
      and save to a dictionary with its relative path, if
      `path` is not None, use pickle to save all binary data
      to a file
  override: bool
      if True, remove existed folder to override everything.

  Return
  ------
  path: str
      path to the folder that store NNOps and variables
  """
    # ====== check output_mode ====== #
    if path is None and not binary_output:
        raise ValueError('`path` cannot be None if `binary_output=False`')
    is_path_given = False if path is None else True
    if path is None:
        path = '/tmp/tmp'  # default path
    path_folder = path + uuid(length=25) if binary_output else path
    # ====== getting save data and variables ====== #
    vars = []
    if save_variables:
        for op in as_tuple(nnops):
            if hasattr(op, 'variables'):
                for v in as_tuple(op.variables):
                    if K.is_variable(v):
                        vars.append(v)
    vars = list(set(vars + as_list(variables)))
    # ====== checking path ====== #
    # It is important to remove the `path_folder` AFTER getting all
    # the variables, since this can remove the path to restored
    # variables required in `op.variables`
    if os.path.exists(path_folder):
        if os.path.isfile(path_folder):
            raise ValueError("path: '%s' is NOT a folder." % path_folder)
        elif override:
            shutil.rmtree(path_folder)
            os.mkdir(path_folder)
    else:
        os.mkdir(path_folder)
    nnops_path = os.path.join(path_folder, 'nnops.ai')
    vars_path = os.path.join(path_folder, 'variables')
    # save NNOps
    with open(nnops_path, 'wb') as f:
        cPickle.dump(nnops, f, protocol=cPickle.HIGHEST_PROTOCOL)
    # save Variables
    if len(vars) > 0:
        K.save_variables(vars, vars_path)
    # ====== convert folder to file or binary ====== #
    if binary_output:
        data = folder2bin(path_folder)
        # only return binary data
        if not is_path_given:
            shutil.rmtree(path_folder)
            return data
        # given path, save binary to path
        # check if override
        if os.path.exists(path):
            if override:
                if os.path.isfile(path):
                    os.remove(path)
                else:
                    shutil.rmtree(path)
            else:
                raise RuntimeError(
                    "File at path: %s exists, cannot override." % path)
        # write file
        with open(path, 'wb') as f:
            cPickle.dump(data, f, protocol=cPickle.HIGHEST_PROTOCOL)
        shutil.rmtree(path_folder)
    return path
예제 #18
0
 def test_cudnn_rnn(self):
     if get_ngpu() == 0:
         return
     print()
     batch_size = 2
     time_steps = 5
     input_dim = 12
     hidden_dim = 8
     X = K.variable(value=np.random.rand(batch_size, time_steps, input_dim),
                    dtype='float32',
                    name='X')
     for rnn_mode in ('lstm', 'rnn_relu', 'gru'):
         for num_layers in [1, 2]:
             for W_init in [
                     init_ops.glorot_uniform_initializer(seed=1234),
                     init_ops.random_normal_initializer(seed=1234)
             ]:
                 for b_init in [0, 1]:
                     for bidirectional in (True, False):
                         for skip_input in (False, ):
                             print('RNNmode:%s' % rnn_mode,
                                   "#Layers:%d" % num_layers,
                                   'Bidirectional:%s' % bidirectional,
                                   'SkipInput:%s' % skip_input)
                             weights, biases = K.init_rnn(
                                 input_dim=input_dim,
                                 hidden_dim=hidden_dim,
                                 num_gates=rnn_mode,
                                 num_layers=num_layers,
                                 W_init=W_init,
                                 b_init=b_init,
                                 skip_input=skip_input,
                                 cudnn_vector=False,
                                 is_bidirectional=bidirectional,
                                 name=None)
                             # ====== check number of params ====== #
                             params1 = K.params_to_cudnn(weights, biases)
                             n = params1.shape[0].value
                             nb_params = cudnn_rnn_ops.cudnn_rnn_opaque_params_size(
                                 rnn_mode=rnn_mode,
                                 num_layers=num_layers,
                                 num_units=hidden_dim,
                                 input_size=input_dim,
                                 input_mode='skip_input'
                                 if skip_input else 'linear_input',
                                 direction='bidirectional'
                                 if bidirectional else 'unidirectional')
                             nb_params = K.eval(nb_params)
                             assert n == nb_params
                             # ====== check cannonical shape match ====== #
                             kwargs = {
                                 'num_layers':
                                 num_layers,
                                 'num_units':
                                 hidden_dim,
                                 'input_mode':
                                 'skip_input'
                                 if skip_input else 'linear_input',
                                 'direction':
                                 'bidirectional'
                                 if bidirectional else 'unidirectional'
                             }
                             if rnn_mode == 'lstm':
                                 rnn = cudnn_rnn.CudnnLSTM(**kwargs)
                             elif rnn_mode == 'gru':
                                 rnn = cudnn_rnn.CudnnGRU(**kwargs)
                             if rnn_mode == 'rnn_relu':
                                 rnn = cudnn_rnn.CudnnRNNRelu(**kwargs)
                             if rnn_mode == 'rnn_tanh':
                                 rnn = cudnn_rnn.CudnnRNNTanh(**kwargs)
                             rnn.build(input_shape=(None, None, input_dim))
                             assert len(weights) == len(
                                 rnn.canonical_weight_shapes)
                             assert len(biases) == len(
                                 rnn.canonical_bias_shapes)
                             for w, s in zip(weights,
                                             rnn.canonical_weight_shapes):
                                 assert tuple(w.shape.as_list()) == s
                             # ====== check params conversion ====== #
                             K.initialize_all_variables()
                             params2 = cudnn_rnn_ops.cudnn_rnn_canonical_to_opaque_params(
                                 rnn_mode=rnn_mode,
                                 num_layers=num_layers,
                                 num_units=hidden_dim,
                                 input_size=input_dim,
                                 input_mode='skip_input'
                                 if skip_input else 'linear_input',
                                 direction='bidirectional'
                                 if bidirectional else 'unidirectional',
                                 weights=weights,
                                 biases=biases)
                             assert np.all(
                                 K.eval(params1) == K.eval(params2))
                             # ====== odin cudnn implementation ====== #
                             name = 'TEST' + uuid(length=25)
                             outputs = K.cudnn_rnn(
                                 X=X,
                                 num_units=hidden_dim,
                                 rnn_mode=rnn_mode,
                                 num_layers=num_layers,
                                 parameters=None,
                                 skip_input=skip_input,
                                 is_bidirectional=bidirectional,
                                 dropout=0.1,
                                 name=name)
                             K.initialize_all_variables()
                             s0 = K.eval(outputs[0]).sum()
                             s1 = K.eval(outputs[1]).sum()
                             all_variables = K.get_all_variables(scope=name)
                             new_weights = [
                                 i for i in all_variables
                                 if K.role.has_roles(i, roles=K.role.Weight)
                             ]
                             new_biases = [
                                 i for i in all_variables
                                 if K.role.has_roles(i, roles=K.role.Bias)
                             ]
                             new_weights, new_biases = K.sort_cudnn_params(
                                 new_weights, new_biases, rnn_mode=rnn_mode)
                             assert len(weights) == len(weights)
                             assert len(biases) == len(biases)
                             for i, j in zip(weights + biases,
                                             new_weights + new_biases):
                                 assert i.name.split(
                                     '/')[-1] == j.name.split('/')[-1]
                             # ====== CudnnRNN wrapper ====== #
                             rnn = N.CudnnRNN(
                                 num_units=hidden_dim,
                                 W_init=new_weights,
                                 b_init=new_biases,
                                 rnn_mode=rnn_mode,
                                 num_layers=num_layers,
                                 skip_input=skip_input,
                                 is_bidirectional=bidirectional,
                                 return_states=True,
                                 dropout=0.)
                             outputs = rnn(X)
                             K.initialize_all_variables()
                             y0 = K.eval(outputs[0]).sum()
                             y1 = K.eval(outputs[1]).sum()
                             assert y0 == s0
                             assert y1 == s1