예제 #1
0
    def test_fpn_decoder_creation(self, num_filters, use_separable_conv):
        """Test creation of FPN decoder."""
        min_level = 3
        max_level = 7
        input_specs = {}
        for level in range(min_level, max_level):
            input_specs[str(level)] = tf.TensorShape(
                [1, 128 // (2**level), 128 // (2**level), 3])

        network = decoders.FPN(input_specs=input_specs,
                               num_filters=num_filters,
                               use_separable_conv=use_separable_conv,
                               use_sync_bn=True)

        model_config = configs.retinanet.RetinaNet()
        model_config.min_level = min_level
        model_config.max_level = max_level
        model_config.num_classes = 10
        model_config.input_size = [None, None, 3]
        model_config.decoder = decoders_cfg.Decoder(
            type='fpn',
            fpn=decoders_cfg.FPN(num_filters=num_filters,
                                 use_separable_conv=use_separable_conv))

        factory_network = factory.build_decoder(input_specs=input_specs,
                                                model_config=model_config)

        network_config = network.get_config()
        factory_network_config = factory_network.get_config()

        self.assertEqual(network_config, factory_network_config)
예제 #2
0
class RetinaNet(hyperparams.Config):
    num_classes: int = 0
    input_size: List[int] = dataclasses.field(default_factory=list)
    min_level: int = 3
    max_level: int = 7
    anchor: Anchor = Anchor()
    backbone: backbones.Backbone = backbones.Backbone(
        type='resnet', resnet=backbones.ResNet())
    decoder: decoders.Decoder = decoders.Decoder(type='fpn',
                                                 fpn=decoders.FPN())
    head: RetinaNetHead = RetinaNetHead()
    detection_generator: DetectionGenerator = DetectionGenerator()
    norm_activation: common.NormActivation = common.NormActivation()
예제 #3
0
class MaskRCNN(hyperparams.Config):
    num_classes: int = 0
    input_size: List[int] = dataclasses.field(default_factory=list)
    min_level: int = 2
    max_level: int = 6
    anchor: Anchor = Anchor()
    include_mask: bool = True
    backbone: backbones.Backbone = backbones.Backbone(
        type='resnet', resnet=backbones.ResNet())
    decoder: decoders.Decoder = decoders.Decoder(type='fpn',
                                                 fpn=decoders.FPN())
    rpn_head: RPNHead = RPNHead()
    detection_head: DetectionHead = DetectionHead()
    roi_generator: ROIGenerator = ROIGenerator()
    roi_sampler: ROISampler = ROISampler()
    roi_aligner: ROIAligner = ROIAligner()
    detection_generator: DetectionGenerator = DetectionGenerator()
    mask_head: Optional[MaskHead] = MaskHead()
    mask_sampler: Optional[MaskSampler] = MaskSampler()
    mask_roi_aligner: Optional[MaskROIAligner] = MaskROIAligner()
    norm_activation: common.NormActivation = common.NormActivation(
        norm_momentum=0.997, norm_epsilon=0.0001, use_sync_bn=True)
예제 #4
0
    def test_builder(self, backbone_type, decoder_type, input_size,
                     quantize_detection_head, quantize_detection_decoder):
        num_classes = 2
        input_specs = tf.keras.layers.InputSpec(
            shape=[None, input_size[0], input_size[1], 3])

        if backbone_type == 'spinenet_mobile':
            backbone_config = backbones.Backbone(
                type=backbone_type,
                spinenet_mobile=backbones.SpineNetMobile(
                    model_id='49',
                    stochastic_depth_drop_rate=0.2,
                    min_level=3,
                    max_level=7,
                    use_keras_upsampling_2d=True))
        elif backbone_type == 'mobilenet':
            backbone_config = backbones.Backbone(type=backbone_type,
                                                 mobilenet=backbones.MobileNet(
                                                     model_id='MobileNetV2',
                                                     filter_size_scale=1.0))
        else:
            raise ValueError(
                'backbone_type {} is not supported'.format(backbone_type))

        if decoder_type == 'identity':
            decoder_config = decoders.Decoder(type=decoder_type)
        elif decoder_type == 'fpn':
            decoder_config = decoders.Decoder(type=decoder_type,
                                              fpn=decoders.FPN(
                                                  num_filters=128,
                                                  use_separable_conv=True,
                                                  use_keras_layer=True))
        else:
            raise ValueError(
                'decoder_type {} is not supported'.format(decoder_type))

        model_config = retinanet_cfg.RetinaNet(
            num_classes=num_classes,
            input_size=[input_size[0], input_size[1], 3],
            backbone=backbone_config,
            decoder=decoder_config,
            head=retinanet_cfg.RetinaNetHead(attribute_heads=None,
                                             use_separable_conv=True))

        l2_regularizer = tf.keras.regularizers.l2(5e-5)
        # Build the original float32 retinanet model.
        model = factory.build_retinanet(input_specs=input_specs,
                                        model_config=model_config,
                                        l2_regularizer=l2_regularizer)

        # Call the model with dummy input to build the head part.
        dummpy_input = tf.zeros([1] + model_config.input_size)
        model(dummpy_input, training=True)

        # Build the QAT model from the original model with quantization config.
        qat_model = qat_factory.build_qat_retinanet(
            model=model,
            quantization=common.Quantization(
                quantize_detection_decoder=quantize_detection_decoder,
                quantize_detection_head=quantize_detection_head),
            model_config=model_config)

        if quantize_detection_head:
            # head become a RetinaNetHeadQuantized when we apply quantization.
            self.assertIsInstance(
                qat_model.head,
                qat_dense_prediction_heads.RetinaNetHeadQuantized)
        else:
            # head is a RetinaNetHead if we don't apply quantization on head part.
            self.assertIsInstance(qat_model.head,
                                  dense_prediction_heads.RetinaNetHead)
            self.assertNotIsInstance(
                qat_model.head,
                qat_dense_prediction_heads.RetinaNetHeadQuantized)

        if decoder_type == 'FPN':
            if quantize_detection_decoder:
                # FPN decoder become a general keras functional model after applying
                # quantization.
                self.assertNotIsInstance(qat_model.decoder, fpn.FPN)
            else:
                self.assertIsInstance(qat_model.decoder, fpn.FPN)
예제 #5
0
def seg_resnetfpn_pascal() -> cfg.ExperimentConfig:
    """Image segmentation on pascal voc with resnet-fpn."""
    train_batch_size = 256
    eval_batch_size = 32
    steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
    config = cfg.ExperimentConfig(
        task=SemanticSegmentationTask(
            model=SemanticSegmentationModel(
                num_classes=21,
                input_size=[512, 512, 3],
                min_level=3,
                max_level=7,
                backbone=backbones.Backbone(
                    type='resnet', resnet=backbones.ResNet(model_id=50)),
                decoder=decoders.Decoder(type='fpn', fpn=decoders.FPN()),
                head=SegmentationHead(level=3, num_convs=3),
                norm_activation=common.NormActivation(activation='swish',
                                                      use_sync_bn=True)),
            losses=Losses(l2_weight_decay=1e-4),
            train_data=DataConfig(input_path=os.path.join(
                PASCAL_INPUT_PATH_BASE, 'train_aug*'),
                                  is_training=True,
                                  global_batch_size=train_batch_size,
                                  aug_scale_min=0.2,
                                  aug_scale_max=1.5),
            validation_data=DataConfig(input_path=os.path.join(
                PASCAL_INPUT_PATH_BASE, 'val*'),
                                       is_training=False,
                                       global_batch_size=eval_batch_size,
                                       resize_eval_groundtruth=False,
                                       groundtruth_padded_size=[512, 512],
                                       drop_remainder=False),
        ),
        trainer=cfg.TrainerConfig(
            steps_per_loop=steps_per_epoch,
            summary_interval=steps_per_epoch,
            checkpoint_interval=steps_per_epoch,
            train_steps=450 * steps_per_epoch,
            validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
            validation_interval=steps_per_epoch,
            optimizer_config=optimization.OptimizationConfig({
                'optimizer': {
                    'type': 'sgd',
                    'sgd': {
                        'momentum': 0.9
                    }
                },
                'learning_rate': {
                    'type': 'polynomial',
                    'polynomial': {
                        'initial_learning_rate': 0.007,
                        'decay_steps': 450 * steps_per_epoch,
                        'end_learning_rate': 0.0,
                        'power': 0.9
                    }
                },
                'warmup': {
                    'type': 'linear',
                    'linear': {
                        'warmup_steps': 5 * steps_per_epoch,
                        'warmup_learning_rate': 0
                    }
                }
            })),
        restrictions=[
            'task.train_data.is_training != None',
            'task.validation_data.is_training != None'
        ])

    return config
예제 #6
0
def maskrcnn_mobilenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Mask R-CNN with MobileNet backbone."""
  steps_per_epoch = 232
  coco_val_samples = 5000
  train_batch_size = 512
  eval_batch_size = 512

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              backbone=backbones.Backbone(
                  type='mobilenet',
                  mobilenet=backbones.MobileNet(model_id='MobileNetV2')),
              decoder=decoders.Decoder(
                  type='fpn',
                  fpn=decoders.FPN(num_filters=128, use_separable_conv=True)),
              rpn_head=RPNHead(use_separable_conv=True,
                               num_filters=128),  # 1/2 of original channels.
              detection_head=DetectionHead(
                  use_separable_conv=True, num_filters=128,
                  fc_dims=512),  # 1/2 of original channels.
              mask_head=MaskHead(use_separable_conv=True,
                                 num_filters=128),  # 1/2 of original channels.
              anchor=Anchor(anchor_size=3),
              norm_activation=common.NormActivation(
                  activation='relu6',
                  norm_momentum=0.99,
                  norm_epsilon=0.001,
                  use_sync_bn=True),
              num_classes=91,
              input_size=[512, 512, 3],
              min_level=3,
              max_level=6,
              include_mask=True),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.5, aug_scale_max=2.0)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
      trainer=cfg.TrainerConfig(
          train_steps=steps_per_epoch * 350,
          validation_steps=coco_val_samples // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          steps_per_epoch * 320, steps_per_epoch * 340
                      ],
                      'values': [0.32, 0.032, 0.0032],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
      ])
  return config