def test_distribute_climate(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) gdirs = [] # loop because for some reason indexing wont work for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) climate.distribute_climate_data(gdirs) with netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) as nc_r: ref_h = nc_r.variables['hgt'][1, 1] ref_p = nc_r.variables['prcp'][:, 1, 1] ref_p *= cfg.PARAMS['prcp_scaling_factor'] ref_t = nc_r.variables['temp'][:, 1, 1] with netCDF4.Dataset(os.path.join(gdir.dir, 'climate_monthly.nc')) as nc_r: self.assertTrue(ref_h == nc_r.ref_hgt) np.testing.assert_allclose(ref_t, nc_r.variables['temp'][:]) np.testing.assert_allclose(ref_p, nc_r.variables['prcp'][:])
def test_mu_candidates(self): hef_file = get_demo_file('Hintereisferner.shp') entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0] gdirs = [] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) gdirs.append(gdir) climate.distribute_climate_data(gdirs) climate.mu_candidates(gdir, div_id=0) se = gdir.read_pickle('mu_candidates') self.assertTrue(se.index[0] == 1802) self.assertTrue(se.index[-1] == 2003) df = pd.DataFrame() df['mu'] = se # Check that the moovin average of temp is negatively correlated # with the mus with netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) as nc_r: ref_t = nc_r.variables['temp'][:, 1, 1] ref_t = np.mean(ref_t.reshape((len(df), 12)), 1) ma = np.convolve(ref_t, np.ones(31) / float(31), 'same') df['temp'] = ma df = df.dropna() self.assertTrue(np.corrcoef(df['mu'], df['temp'])[0, 1] < -0.75)
def test_distribute_climate_cru(self): hef_file = get_demo_file('Hintereisferner.shp') entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0] gdirs = [] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir_cru) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) climate.distribute_climate_data([gdirs[0]]) cru_dir = get_demo_file('cru_ts3.23.1901.2014.tmp.dat.nc') cru_dir = os.path.dirname(cru_dir) cfg.PATHS['climate_file'] = '~' cfg.PATHS['cru_dir'] = cru_dir climate.distribute_climate_data([gdirs[1]]) cfg.PATHS['cru_dir'] = '~' cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') gdh = gdirs[0] gdc = gdirs[1] with xr.open_dataset(os.path.join(gdh.dir, 'climate_monthly.nc')) as nc_h: with xr.open_dataset(os.path.join(gdc.dir, 'climate_monthly.nc')) as nc_c: # put on the same altitude # (using default gradient because better) temp_cor = nc_c.temp -0.0065 * (nc_h.ref_hgt - nc_c.ref_hgt) totest = temp_cor - nc_h.temp self.assertTrue(totest.mean() < 0.5) # precip totest = nc_c.prcp - nc_h.prcp self.assertTrue(totest.mean() < 100)
def test_mb_climate(self): hef_file = get_demo_file('Hintereisferner.shp') entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0] gdirs = [] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) climate.distribute_climate_data(gdirs) with netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) as nc_r: ref_h = nc_r.variables['hgt'][1, 1] ref_p = nc_r.variables['prcp'][:, 1, 1] ref_p *= cfg.PARAMS['prcp_scaling_factor'] ref_t = nc_r.variables['temp'][:, 1, 1] ref_t = np.where(ref_t < 0, 0, ref_t) hgts = np.array([ref_h, ref_h, -8000, 8000]) time, temp, prcp = climate.mb_climate_on_height(gdir, hgts) ref_nt = 202*12 self.assertTrue(len(time) == ref_nt) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(temp[0, :], ref_t) np.testing.assert_allclose(temp[0, :], temp[1, :]) np.testing.assert_allclose(prcp[0, :], prcp[1, :]) np.testing.assert_allclose(prcp[3, :], ref_p) np.testing.assert_allclose(prcp[2, :], ref_p*0) np.testing.assert_allclose(temp[3, :], ref_p*0) yr = [1802, 1802] time, temp, prcp = climate.mb_climate_on_height(gdir, hgts, year_range=yr) ref_nt = 1*12 self.assertTrue(len(time) == ref_nt) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(temp[0, :], ref_t[0:12]) np.testing.assert_allclose(temp[0, :], temp[1, :]) np.testing.assert_allclose(prcp[0, :], prcp[1, :]) np.testing.assert_allclose(prcp[3, :], ref_p[0:12]) np.testing.assert_allclose(prcp[2, :], ref_p[0:12]*0) np.testing.assert_allclose(temp[3, :], ref_p[0:12]*0) yr = [1803, 1804] time, temp, prcp = climate.mb_climate_on_height(gdir, hgts, year_range=yr) ref_nt = 2*12 self.assertTrue(len(time) == ref_nt) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(temp[0, :], ref_t[12:36]) np.testing.assert_allclose(temp[0, :], temp[1, :]) np.testing.assert_allclose(prcp[0, :], prcp[1, :]) np.testing.assert_allclose(prcp[3, :], ref_p[12:36]) np.testing.assert_allclose(prcp[2, :], ref_p[12:36]*0) np.testing.assert_allclose(temp[3, :], ref_p[12:36]*0)
def test_distribute_climate_cru(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) gdirs = [] # loop because for some reason indexing wont work for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir_cru) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) climate.distribute_climate_data([gdirs[0]]) cru_dir = get_demo_file('cru_ts3.23.1901.2014.tmp.dat.nc') cru_dir = os.path.dirname(cru_dir) cfg.PATHS['climate_file'] = '~' cfg.PATHS['cru_dir'] = cru_dir climate.distribute_climate_data([gdirs[1]]) cfg.PATHS['cru_dir'] = '~' cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') gdh = gdirs[0] gdc = gdirs[1] with xr.open_dataset(os.path.join(gdh.dir, 'climate_monthly.nc')) as nc_h: with xr.open_dataset(os.path.join(gdc.dir, 'climate_monthly.nc')) as nc_c: # put on the same altitude # (using default gradient because better) temp_cor = nc_c.temp - 0.0065 * (nc_h.ref_hgt - nc_c.ref_hgt) totest = temp_cor - nc_h.temp self.assertTrue(totest.mean() < 0.5) # precip totest = nc_c.prcp - nc_h.prcp self.assertTrue(totest.mean() < 100)
def test_find_tstars(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work gdirs = [] for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) gdirs.append(gdir) climate.distribute_climate_data(gdirs) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_stars, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) y, t, p = climate.mb_yearly_climate_on_glacier(gdir, div_id=0) # which years to look at selind = np.searchsorted(y, mbdf.index) t = t[selind] p = p[selind] mu_yr_clim = gdir.read_pickle('mu_candidates', div_id=0) for t_s, rmd in zip(t_stars, bias): mb_per_mu = p - mu_yr_clim.loc[t_s] * t md = utils.md(mbdf['ANNUAL_BALANCE'], mb_per_mu) np.testing.assert_allclose(md, rmd) self.assertTrue(np.abs(md / np.mean(mbdf['ANNUAL_BALANCE'])) < 0.1) r = utils.corrcoef(mbdf['ANNUAL_BALANCE'], mb_per_mu) self.assertTrue(r > 0.8)
def test_find_tstars(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work gdirs = [] for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) gdirs.append(gdir) climate.distribute_climate_data(gdirs) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_stars, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) y, t, p = climate.mb_yearly_climate_on_glacier(gdir, div_id=0) # which years to look at selind = np.searchsorted(y, mbdf.index) t = t[selind] p = p[selind] mu_yr_clim = gdir.read_pickle('mu_candidates', div_id=0) for t_s, rmd in zip(t_stars, bias): mb_per_mu = p - mu_yr_clim.loc[t_s] * t md = utils.md(mbdf['ANNUAL_BALANCE'], mb_per_mu) np.testing.assert_allclose(md, rmd) self.assertTrue(np.abs(md/np.mean(mbdf['ANNUAL_BALANCE'])) < 0.1) r = utils.corrcoef(mbdf['ANNUAL_BALANCE'], mb_per_mu) self.assertTrue(r > 0.8)
def test_distribute_climate(self): hef_file = get_demo_file('Hintereisferner.shp') entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0] gdirs = [] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) climate.distribute_climate_data(gdirs) with netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) as nc_r: ref_h = nc_r.variables['hgt'][1, 1] ref_p = nc_r.variables['prcp'][:, 1, 1] ref_p *= cfg.PARAMS['prcp_scaling_factor'] ref_t = nc_r.variables['temp'][:, 1, 1] with netCDF4.Dataset(os.path.join(gdir.dir, 'climate_monthly.nc')) as nc_r: self.assertTrue(ref_h == nc_r.ref_hgt) np.testing.assert_allclose(ref_t, nc_r.variables['temp'][:]) np.testing.assert_allclose(ref_p, nc_r.variables['prcp'][:])
def init_hef(reset=False, border=40, invert_with_sliding=True): # test directory testdir = TESTDIR_BASE + '_border{}'.format(border) if not invert_with_sliding: testdir += '_withoutslide' if not os.path.exists(testdir): os.makedirs(testdir) reset = True if not os.path.exists(os.path.join(testdir, 'RGI40-11.00897')): reset = True if not os.path.exists(os.path.join(testdir, 'RGI40-11.00897', 'inversion_params.pkl')): reset = True # Init cfg.initialize() cfg.set_divides_db(get_demo_file('HEF_divided.shp')) cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') cfg.PARAMS['border'] = border # loop because for some reason indexing wont work hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset) if not reset: return gdir gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) centerlines.compute_downstream_lines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) climate.local_mustar_apparent_mb(gdir, tstar=t_star[-1], bias=bias[-1]) inversion.prepare_for_inversion(gdir) ref_v = 0.573 * 1e9 if invert_with_sliding: def to_optimize(x): # For backwards compat _fd = 1.9e-24 * x[0] glen_a = (cfg.N+2) * _fd / 2. fs = 5.7e-20 * x[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)['x'] _fd = 1.9e-24 * out[0] glen_a = (cfg.N+2) * _fd / 2. fs = 5.7e-20 * out[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) else: def to_optimize(x): glen_a = cfg.A * x[0] v, _ = inversion.invert_parabolic_bed(gdir, fs=0., glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1], bounds=((0.01, 10),), tol=1e-4)['x'] glen_a = cfg.A * out[0] fs = 0. v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) d = dict(fs=fs, glen_a=glen_a) d['factor_glen_a'] = out[0] try: d['factor_fs'] = out[1] except IndexError: d['factor_fs'] = 0. gdir.write_pickle(d, 'inversion_params') inversion.distribute_thickness(gdir, how='per_altitude', add_nc_name=True) inversion.distribute_thickness(gdir, how='per_interpolation', add_slope=False, smooth=False, add_nc_name=True) return gdir
def init_hef(reset=False, border=40, invert_with_sliding=True): # test directory testdir = TESTDIR_BASE + '_border{}'.format(border) if not invert_with_sliding: testdir += '_withoutslide' if not os.path.exists(testdir): os.makedirs(testdir) reset = True if not os.path.exists(os.path.join(testdir, 'RGI40-11.00897')): reset = True if not os.path.exists(os.path.join(testdir, 'RGI40-11.00897', 'inversion_params.pkl')): reset = True # Init cfg.initialize() cfg.set_divides_db(get_demo_file('HEF_divided.shp')) cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') cfg.PARAMS['border'] = border # loop because for some reason indexing wont work hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset) if not reset: return gdir gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) centerlines.compute_downstream_lines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) climate.local_mustar_apparent_mb(gdir, tstar=t_star[-1], bias=bias[-1]) inversion.prepare_for_inversion(gdir) ref_v = 0.573 * 1e9 if invert_with_sliding: def to_optimize(x): # For backwards compat _fd = 1.9e-24 * x[0] glen_a = (cfg.N+2) * _fd / 2. fs = 5.7e-20 * x[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)['x'] _fd = 1.9e-24 * out[0] glen_a = (cfg.N+2) * _fd / 2. fs = 5.7e-20 * out[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) else: def to_optimize(x): glen_a = cfg.A * x[0] v, _ = inversion.invert_parabolic_bed(gdir, fs=0., glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1], bounds=((0.01, 10),), tol=1e-4)['x'] glen_a = cfg.A * out[0] fs = 0. v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) d = dict(fs=fs, glen_a=glen_a) d['factor_glen_a'] = out[0] try: d['factor_fs'] = out[1] except IndexError: d['factor_fs'] = 0. gdir.write_pickle(d, 'inversion_params') return gdir
def test_invert_hef_nofs(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) t_star = t_star[-1] bias = bias[-1] climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias) # OK. Values from Fischer and Kuhn 2013 # Area: 8.55 # meanH = 67+-7 # Volume = 0.573+-0.063 # maxH = 242+-13 inversion.prepare_for_inversion(gdir) ref_v = 0.573 * 1e9 def to_optimize(x): glen_a = cfg.A * x[0] fs = 0. v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1], bounds=((0.00001, 100000),), tol=1e-4)['x'] self.assertTrue(out[0] > 0.1) self.assertTrue(out[0] < 10) glen_a = cfg.A * out[0] fs = 0. v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) np.testing.assert_allclose(ref_v, v) lens = [len(gdir.read_pickle('centerlines', div_id=i)) for i in [1,2,3]] pid = np.argmax(lens) + 1 cls = gdir.read_pickle('inversion_output', div_id=pid) fls = gdir.read_pickle('inversion_flowlines', div_id=pid) maxs = 0. for cl, fl in zip(cls, fls): thick = cl['thick'] _max = np.max(thick) if _max > maxs: maxs = _max atol = 30 if HAS_NEW_GDAL else 10 np.testing.assert_allclose(242, maxs, atol=atol) # check that its not tooo sensitive to the dx cfg.PARAMS['flowline_dx'] = 1. geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) t_star = t_star[-1] bias = bias[-1] climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias) inversion.prepare_for_inversion(gdir) v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) np.testing.assert_allclose(ref_v, v, rtol=0.02) cls = gdir.read_pickle('inversion_output', div_id=pid) maxs = 0. for cl in cls: thick = cl['thick'] _max = np.max(thick) if _max > maxs: maxs = _max np.testing.assert_allclose(242, maxs, atol=atol)
def test_invert_hef(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) t_star = t_star[-1] bias = bias[-1] climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias) # OK. Values from Fischer and Kuhn 2013 # Area: 8.55 # meanH = 67+-7 # Volume = 0.573+-0.063 # maxH = 242+-13 inversion.prepare_for_inversion(gdir) lens = [ len(gdir.read_pickle('centerlines', div_id=i)) for i in [1, 2, 3] ] pid = np.argmax(lens) + 1 # Check how many clips: cls = gdir.read_pickle('inversion_input', div_id=pid) nabove = 0 maxs = 0. npoints = 0. for cl in cls: # Clip slope to avoid negative and small slopes slope = cl['slope_angle'] nm = np.where(slope < np.deg2rad(2.)) nabove += len(nm[0]) npoints += len(slope) _max = np.max(slope) if _max > maxs: maxs = _max self.assertTrue(nabove == 0) self.assertTrue(np.rad2deg(maxs) < 40.) ref_v = 0.573 * 1e9 def to_optimize(x): glen_a = cfg.A * x[0] fs = cfg.FS * x[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)['x'] self.assertTrue(out[0] > 0.1) self.assertTrue(out[1] > 0.1) self.assertTrue(out[0] < 1.1) self.assertTrue(out[1] < 1.1) glen_a = cfg.A * out[0] fs = cfg.FS * out[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) np.testing.assert_allclose(ref_v, v) lens = [ len(gdir.read_pickle('centerlines', div_id=i)) for i in [1, 2, 3] ] pid = np.argmax(lens) + 1 cls = gdir.read_pickle('inversion_output', div_id=pid) fls = gdir.read_pickle('inversion_flowlines', div_id=pid) maxs = 0. for cl, fl in zip(cls, fls): thick = cl['thick'] _max = np.max(thick) if _max > maxs: maxs = _max np.testing.assert_allclose(242, maxs, atol=21)
def test_yearly_mb_climate(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work gdirs = [] for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) climate.distribute_climate_data(gdirs) nc_r = netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) ref_h = nc_r.variables['hgt'][1, 1] ref_p = nc_r.variables['prcp'][:, 1, 1] ref_p *= cfg.PARAMS['prcp_scaling_factor'] ref_t = nc_r.variables['temp'][:, 1, 1] ref_t = np.where(ref_t < 0, 0, ref_t) nc_r.close() # NORMAL -------------------------------------------------------------- hgts = np.array([ref_h, ref_h, -8000, 8000]) years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts) ref_nt = 202 self.assertTrue(len(years) == ref_nt) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) yr = [1802, 1802] years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, year_range=yr) ref_nt = 1 self.assertTrue(len(years) == ref_nt) self.assertTrue(years == 1802) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(temp[0, :], np.sum(ref_t[0:12])) np.testing.assert_allclose(temp[0, :], temp[1, :]) np.testing.assert_allclose(prcp[0, :], prcp[1, :]) np.testing.assert_allclose(prcp[3, :], np.sum(ref_p[0:12])) np.testing.assert_allclose(prcp[2, :], np.sum(ref_p[0:12])*0) np.testing.assert_allclose(temp[3, :], np.sum(ref_p[0:12])*0) yr = [1803, 1804] years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, year_range=yr) ref_nt = 2 self.assertTrue(len(years) == ref_nt) np.testing.assert_allclose(years, yr) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(prcp[2, :], [0, 0]) np.testing.assert_allclose(temp[3, :], [0, 0]) # FLATTEN ------------------------------------------------------------- hgts = np.array([ref_h, ref_h, -8000, 8000]) years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, flatten=True) ref_nt = 202 self.assertTrue(len(years) == ref_nt) self.assertTrue(temp.shape == (ref_nt,)) self.assertTrue(prcp.shape == (ref_nt,)) yr = [1802, 1802] hgts = np.array([ref_h]) years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, year_range=yr, flatten=True) ref_nt = 1 self.assertTrue(len(years) == ref_nt) self.assertTrue(years == 1802) self.assertTrue(temp.shape == (ref_nt,)) self.assertTrue(prcp.shape == (ref_nt,)) np.testing.assert_allclose(temp[:], np.sum(ref_t[0:12])) yr = [1802, 1802] hgts = np.array([8000]) years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, year_range=yr, flatten=True) np.testing.assert_allclose(prcp[:], np.sum(ref_p[0:12]))
def test_distribute(self): hef_file = get_demo_file('Hintereisferner.shp') entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) t_star = t_star[-1] bias = bias[-1] climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias) # OK. Values from Fischer and Kuhn 2013 # Area: 8.55 # meanH = 67+-7 # Volume = 0.573+-0.063 # maxH = 242+-13 inversion.prepare_for_inversion(gdir) ref_v = 0.573 * 1e9 def to_optimize(x): glen_a = cfg.A * x[0] fs = cfg.FS * x[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-1)['x'] glen_a = cfg.A * out[0] fs = cfg.FS * out[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) np.testing.assert_allclose(ref_v, v) inversion.distribute_thickness(gdir, how='per_altitude', add_nc_name=True) inversion.distribute_thickness(gdir, how='per_interpolation', add_slope=False, add_nc_name=True) grids_file = gdir.get_filepath('gridded_data') with netCDF4.Dataset(grids_file) as nc: t1 = nc.variables['thickness_per_altitude'][:] t2 = nc.variables['thickness_per_interpolation'][:] np.testing.assert_allclose(np.sum(t1), np.sum(t2)) if not HAS_NEW_GDAL: np.testing.assert_allclose(np.max(t1), np.max(t2), atol=30)
def test_local_mustar(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) t_star = t_star[-1] bias = bias[-1] climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias) df = pd.read_csv(gdir.get_filepath('local_mustar', div_id=0)) mu_ref = gdir.read_pickle('mu_candidates', div_id=0).loc[t_star] np.testing.assert_allclose(mu_ref, df['mu_star'][0], atol=1e-3) # Check for apparent mb to be zeros for i in [0] + list(gdir.divide_ids): fls = gdir.read_pickle('inversion_flowlines', div_id=i) tmb = 0. for fl in fls: self.assertTrue(fl.apparent_mb.shape == fl.widths.shape) tmb += np.sum(fl.apparent_mb * fl.widths) np.testing.assert_allclose(tmb, 0., atol=0.01) if i == 0: continue np.testing.assert_allclose(fls[-1].flux[-1], 0., atol=0.01) # ------ Look for gradient # which years to look at fls = gdir.read_pickle('inversion_flowlines', div_id=0) mb_on_h = np.array([]) h = np.array([]) for fl in fls: y, t, p = climate.mb_yearly_climate_on_height(gdir, fl.surface_h) selind = np.searchsorted(y, mbdf.index) t = np.mean(t[:, selind], axis=1) p = np.mean(p[:, selind], axis=1) mb_on_h = np.append(mb_on_h, p - mu_ref * t) h = np.append(h, fl.surface_h) dfg = pd.read_csv(get_demo_file('mbgrads_RGI40-11.00897.csv'), index_col='ALTITUDE').mean(axis=1) # Take the altitudes below 3100 and fit a line dfg = dfg[dfg.index < 3100] pok = np.where(h < 3100) from scipy.stats import linregress slope_obs, _, _, _, _ = linregress(dfg.index, dfg.values) slope_our, _, _, _, _ = linregress(h[pok], mb_on_h[pok]) np.testing.assert_allclose(slope_obs, slope_our, rtol=0.1)
def test_yearly_mb_climate(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work gdirs = [] for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) climate.distribute_climate_data(gdirs) nc_r = netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) ref_h = nc_r.variables['hgt'][1, 1] ref_p = nc_r.variables['prcp'][:, 1, 1] ref_p *= cfg.PARAMS['prcp_scaling_factor'] ref_t = nc_r.variables['temp'][:, 1, 1] ref_t = np.where(ref_t < 0, 0, ref_t) nc_r.close() # NORMAL -------------------------------------------------------------- hgts = np.array([ref_h, ref_h, -8000, 8000]) years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts) ref_nt = 202 self.assertTrue(len(years) == ref_nt) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) yr = [1802, 1802] years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, year_range=yr) ref_nt = 1 self.assertTrue(len(years) == ref_nt) self.assertTrue(years == 1802) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(temp[0, :], np.sum(ref_t[0:12])) np.testing.assert_allclose(temp[0, :], temp[1, :]) np.testing.assert_allclose(prcp[0, :], prcp[1, :]) np.testing.assert_allclose(prcp[3, :], np.sum(ref_p[0:12])) np.testing.assert_allclose(prcp[2, :], np.sum(ref_p[0:12]) * 0) np.testing.assert_allclose(temp[3, :], np.sum(ref_p[0:12]) * 0) yr = [1803, 1804] years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, year_range=yr) ref_nt = 2 self.assertTrue(len(years) == ref_nt) np.testing.assert_allclose(years, yr) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(prcp[2, :], [0, 0]) np.testing.assert_allclose(temp[3, :], [0, 0]) # FLATTEN ------------------------------------------------------------- hgts = np.array([ref_h, ref_h, -8000, 8000]) years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, flatten=True) ref_nt = 202 self.assertTrue(len(years) == ref_nt) self.assertTrue(temp.shape == (ref_nt, )) self.assertTrue(prcp.shape == (ref_nt, )) yr = [1802, 1802] hgts = np.array([ref_h]) years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, year_range=yr, flatten=True) ref_nt = 1 self.assertTrue(len(years) == ref_nt) self.assertTrue(years == 1802) self.assertTrue(temp.shape == (ref_nt, )) self.assertTrue(prcp.shape == (ref_nt, )) np.testing.assert_allclose(temp[:], np.sum(ref_t[0:12])) yr = [1802, 1802] hgts = np.array([8000]) years, temp, prcp = climate.mb_yearly_climate_on_height(gdir, hgts, year_range=yr, flatten=True) np.testing.assert_allclose(prcp[:], np.sum(ref_p[0:12]))
def test_invert_hef(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) t_star = t_star[-1] bias = bias[-1] climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias) # OK. Values from Fischer and Kuhn 2013 # Area: 8.55 # meanH = 67+-7 # Volume = 0.573+-0.063 # maxH = 242+-13 inversion.prepare_for_inversion(gdir) lens = [len(gdir.read_pickle('centerlines', div_id=i)) for i in [1,2,3]] pid = np.argmax(lens) + 1 # Check how many clips: cls = gdir.read_pickle('inversion_input', div_id=pid) nabove = 0 maxs = 0. npoints = 0. for cl in cls: # Clip slope to avoid negative and small slopes slope = cl['slope_angle'] nm = np.where(slope < np.deg2rad(2.)) nabove += len(nm[0]) npoints += len(slope) _max = np.max(slope) if _max > maxs: maxs = _max self.assertTrue(nabove == 0) self.assertTrue(np.rad2deg(maxs) < 40.) ref_v = 0.573 * 1e9 def to_optimize(x): glen_a = cfg.A * x[0] fs = cfg.FS * x[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)['x'] self.assertTrue(out[0] > 0.1) self.assertTrue(out[1] > 0.1) self.assertTrue(out[0] < 1.1) self.assertTrue(out[1] < 1.1) glen_a = cfg.A * out[0] fs = cfg.FS * out[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) np.testing.assert_allclose(ref_v, v) lens = [len(gdir.read_pickle('centerlines', div_id=i)) for i in [1,2,3]] pid = np.argmax(lens) + 1 cls = gdir.read_pickle('inversion_output', div_id=pid) fls = gdir.read_pickle('inversion_flowlines', div_id=pid) maxs = 0. for cl, fl in zip(cls, fls): thick = cl['thick'] _max = np.max(thick) if _max > maxs: maxs = _max np.testing.assert_allclose(242, maxs, atol=21)
def test_distribute(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) t_star = t_star[-1] bias = bias[-1] climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias) # OK. Values from Fischer and Kuhn 2013 # Area: 8.55 # meanH = 67+-7 # Volume = 0.573+-0.063 # maxH = 242+-13 inversion.prepare_for_inversion(gdir) ref_v = 0.573 * 1e9 def to_optimize(x): glen_a = cfg.A * x[0] fs = cfg.FS * x[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-1)['x'] glen_a = cfg.A * out[0] fs = cfg.FS * out[1] v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) np.testing.assert_allclose(ref_v, v) inversion.distribute_thickness(gdir, how='per_altitude', add_nc_name=True) inversion.distribute_thickness(gdir, how='per_interpolation', add_slope=False, add_nc_name=True) grids_file = gdir.get_filepath('gridded_data') with netCDF4.Dataset(grids_file) as nc: t1 = nc.variables['thickness_per_altitude'][:] t2 = nc.variables['thickness_per_interpolation'][:] np.testing.assert_allclose(np.sum(t1), np.sum(t2)) if not HAS_NEW_GDAL: np.testing.assert_allclose(np.max(t1), np.max(t2), atol=30)
def test_invert_hef_nofs(self): hef_file = get_demo_file('Hintereisferner.shp') rgidf = gpd.GeoDataFrame.from_file(hef_file) # loop because for some reason indexing wont work for index, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) t_star = t_star[-1] bias = bias[-1] climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias) # OK. Values from Fischer and Kuhn 2013 # Area: 8.55 # meanH = 67+-7 # Volume = 0.573+-0.063 # maxH = 242+-13 inversion.prepare_for_inversion(gdir) ref_v = 0.573 * 1e9 def to_optimize(x): glen_a = cfg.A * x[0] fs = 0. v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 import scipy.optimize as optimization out = optimization.minimize(to_optimize, [1], bounds=((0.00001, 100000), ), tol=1e-4)['x'] self.assertTrue(out[0] > 0.1) self.assertTrue(out[0] < 10) glen_a = cfg.A * out[0] fs = 0. v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) np.testing.assert_allclose(ref_v, v) lens = [ len(gdir.read_pickle('centerlines', div_id=i)) for i in [1, 2, 3] ] pid = np.argmax(lens) + 1 cls = gdir.read_pickle('inversion_output', div_id=pid) fls = gdir.read_pickle('inversion_flowlines', div_id=pid) maxs = 0. for cl, fl in zip(cls, fls): thick = cl['thick'] _max = np.max(thick) if _max > maxs: maxs = _max atol = 30 if HAS_NEW_GDAL else 10 np.testing.assert_allclose(242, maxs, atol=atol) # check that its not tooo sensitive to the dx cfg.PARAMS['flowline_dx'] = 1. geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.distribute_climate_data([gdir]) climate.mu_candidates(gdir, div_id=0) hef_file = get_demo_file('mbdata_RGI40-11.00897.csv') mbdf = pd.read_csv(hef_file).set_index('YEAR') t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE']) t_star = t_star[-1] bias = bias[-1] climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias) inversion.prepare_for_inversion(gdir) v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True) np.testing.assert_allclose(ref_v, v, rtol=0.02) cls = gdir.read_pickle('inversion_output', div_id=pid) maxs = 0. for cl in cls: thick = cl['thick'] _max = np.max(thick) if _max > maxs: maxs = _max np.testing.assert_allclose(242, maxs, atol=atol)
def test_mb_climate(self): hef_file = get_demo_file('Hintereisferner.shp') entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0] gdirs = [] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) climate.distribute_climate_data(gdirs) with netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) as nc_r: ref_h = nc_r.variables['hgt'][1, 1] ref_p = nc_r.variables['prcp'][:, 1, 1] ref_p *= cfg.PARAMS['prcp_scaling_factor'] ref_t = nc_r.variables['temp'][:, 1, 1] ref_t = np.where(ref_t < 0, 0, ref_t) hgts = np.array([ref_h, ref_h, -8000, 8000]) time, temp, prcp = climate.mb_climate_on_height(gdir, hgts) ref_nt = 202 * 12 self.assertTrue(len(time) == ref_nt) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(temp[0, :], ref_t) np.testing.assert_allclose(temp[0, :], temp[1, :]) np.testing.assert_allclose(prcp[0, :], prcp[1, :]) np.testing.assert_allclose(prcp[3, :], ref_p) np.testing.assert_allclose(prcp[2, :], ref_p * 0) np.testing.assert_allclose(temp[3, :], ref_p * 0) yr = [1802, 1802] time, temp, prcp = climate.mb_climate_on_height(gdir, hgts, year_range=yr) ref_nt = 1 * 12 self.assertTrue(len(time) == ref_nt) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(temp[0, :], ref_t[0:12]) np.testing.assert_allclose(temp[0, :], temp[1, :]) np.testing.assert_allclose(prcp[0, :], prcp[1, :]) np.testing.assert_allclose(prcp[3, :], ref_p[0:12]) np.testing.assert_allclose(prcp[2, :], ref_p[0:12] * 0) np.testing.assert_allclose(temp[3, :], ref_p[0:12] * 0) yr = [1803, 1804] time, temp, prcp = climate.mb_climate_on_height(gdir, hgts, year_range=yr) ref_nt = 2 * 12 self.assertTrue(len(time) == ref_nt) self.assertTrue(temp.shape == (4, ref_nt)) self.assertTrue(prcp.shape == (4, ref_nt)) np.testing.assert_allclose(temp[0, :], ref_t[12:36]) np.testing.assert_allclose(temp[0, :], temp[1, :]) np.testing.assert_allclose(prcp[0, :], prcp[1, :]) np.testing.assert_allclose(prcp[3, :], ref_p[12:36]) np.testing.assert_allclose(prcp[2, :], ref_p[12:36] * 0) np.testing.assert_allclose(temp[3, :], ref_p[12:36] * 0)