예제 #1
0
def test_replacement_rate_vals():
    # Test replacement rate function, making sure to trigger all three
    # cases of AIME
    nssmat = np.array([0.5, 0.5, 0.5, 0.5])
    wss = 0.5
    factor_ss = 100000
    retire = 3
    S = 4
    e = np.array([0.1, 0.3, 0.5, 0.2])
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, (e, S, retire))
    assert np.allclose(theta, np.array([0.042012]))

    # e has two dimensions
    nssmat = np.array([[0.4, 0.4], [0.4, 0.4], [0.4, 0.4], [0.4, 0.4]])
    e = np.array([[0.4, 0.3], [0.5, 0.4], [.6, .4], [.4, .3]])
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, (e, S, retire))
    assert np.allclose(theta, np.array([0.042012, 0.03842772]))

    # hit AIME case2
    nssmat = np.array([[0.3, .35], [0.3, .35], [0.3, .35], [0.3, .35]])
    factor_ss = 10000
    e = np.array([[0.35, 0.3], [0.55, 0.4], [.65, .4], [.45, .3]])
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, (e, S, retire))
    assert np.allclose(theta, np.array([0.1145304, 0.0969304]))

    # hit AIME case1
    factor_ss = 1000
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, (e, S, retire))
    assert np.allclose(theta, np.array([0.1755, 0.126]))
예제 #2
0
def euler_equation_solver(guesses, *args):
    '''
    Finds the euler errors for certain b and n, one ability type at a
    time.

    Args:
        guesses (Numpy array): initial guesses for b and n, lenth 2S
        args (tuple): tuple of arguments (r, w, bq, TR, factor, j, p)
        w (scalar): real wage rate
        bq (Numpy array): bequest amounts by age, length S
        tr (scalar): government transfer amount by age, length S
        factor (scalar): scaling factor converting model units to dollars
        p (OG-USA Specifications object): model parameters

    Returns:
        errros (Numpy array): errors from FOCs, length 2S

    '''
    (r, w, bq, tr, factor, j, p) = args

    b_guess = np.array(guesses[:p.S])
    n_guess = np.array(guesses[p.S:])
    b_s = np.array([0] + list(b_guess[:-1]))
    b_splus1 = b_guess

    theta = tax.replacement_rate_vals(n_guess, w, factor, j, p)

    error1 = household.FOC_savings(r, w, b_s, b_splus1, n_guess, bq, factor,
                                   tr, theta, p.e[:, j], p.rho,
                                   p.tau_c[-1, :, j], p.etr_params[-1, :, :],
                                   p.mtry_params[-1, :, :], None, j, p, 'SS')
    error2 = household.FOC_labor(r, w, b_s, b_splus1, n_guess, bq, factor, tr,
                                 theta, p.chi_n, p.e[:, j], p.tau_c[-1, :, j],
                                 p.etr_params[-1, :, :],
                                 p.mtrx_params[-1, :, :], None, j, p, 'SS')

    # Put in constraints for consumption and savings.
    # According to the euler equations, they can be negative.  When
    # Chi_b is large, they will be.  This prevents that from happening.
    # I'm not sure if the constraints are needed for labor.
    # But we might as well put them in for now.
    mask1 = n_guess < 0
    mask2 = n_guess > p.ltilde
    mask3 = b_guess <= 0
    mask4 = np.isnan(n_guess)
    mask5 = np.isnan(b_guess)
    error2[mask1] = 1e14
    error2[mask2] = 1e14
    error1[mask3] = 1e14
    error1[mask5] = 1e14
    error2[mask4] = 1e14
    taxes = tax.total_taxes(r, w, b_s, n_guess, bq, factor, tr, theta, None, j,
                            False, 'SS', p.e[:, j], p.etr_params[-1, :, :], p)
    cons = household.get_cons(r, w, b_s, b_splus1, n_guess, bq, taxes,
                              p.e[:, j], p.tau_c[-1, :, j], p)
    mask6 = cons < 0
    error1[mask6] = 1e14
    errors = np.hstack((error1, error2))

    return errors
예제 #3
0
파일: SS.py 프로젝트: githubxinwen/OG-JPN
def euler_equation_solver(guesses, *args):
    '''
    --------------------------------------------------------------------
    Finds the euler errors for certain b and n, one ability type at a time.
    --------------------------------------------------------------------

    INPUTS:
    guesses = [2S,] vector, initial guesses for b and n
    r = scalar, real interest rate
    w = scalar, real wage rate
    T_H = scalar, lump sum transfer
    factor = scalar, scaling factor converting model units to dollars
    j = integer, ability group
    params = length 21 tuple, list of parameters
    chi_b = [J,] vector, chi^b_j, the utility weight on bequests
    chi_n = [S,] vector, chi^n_s utility weight on labor supply
    tau_bq = scalar, bequest tax rate
    rho = [S,] vector, mortality rates by age
    lambdas = [J,] vector, fraction of population with each ability type
    omega_SS = [S,] vector, stationary population weights
    e =  [S,J] array, effective labor units by age and ability type
    tax_params = length 5 tuple, (tax_func_type, analytical_mtrs,
                 etr_params, mtrx_params, mtry_params)
    tax_func_type   = string, type of tax function used
    analytical_mtrs = boolean, =True if use analytical_mtrs, =False if
                       use estimated MTRs
    etr_params      = [S,BW,#tax params] array, parameters for effective
                      tax rate function
    mtrx_params     = [S,BW,#tax params] array, parameters for marginal
                      tax rate on labor income function
    mtry_params     = [S,BW,#tax params] array, parameters for marginal
                      tax rate on capital income function

    OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION:
    aggr.get_BQ()
    tax.replacement_rate_vals()
    household.FOC_savings()
    household.FOC_labor()
    tax.total_taxes()
    household.get_cons()

    OBJECTS CREATED WITHIN FUNCTION:
    b_guess = [S,] vector, initial guess at household savings
    n_guess = [S,] vector, initial guess at household labor supply
    b_s = [S,] vector, wealth enter period with
    b_splus1 = [S,] vector, household savings
    BQ = scalar, aggregate bequests to lifetime income group
    theta = scalar, replacement rate for social security benenfits
    error1 = [S,] vector, errors from FOC for savings
    error2 = [S,] vector, errors from FOC for labor supply
    tax1 = [S,] vector, total income taxes paid
    cons = [S,] vector, household consumption

    RETURNS: 2Sx1 list of euler errors

    OUTPUT: None
    --------------------------------------------------------------------
    '''
    (r, w, bq, T_H, factor, j, p) = args

    b_guess = np.array(guesses[:p.S])
    n_guess = np.array(guesses[p.S:])
    b_s = np.array([0] + list(b_guess[:-1]))
    b_splus1 = b_guess

    theta = tax.replacement_rate_vals(n_guess, w, factor, j, p)

    error1 = household.FOC_savings(r, w, b_s, b_splus1, n_guess, bq,
                                   factor, T_H, theta, p.e[:, j], p.rho,
                                   p.tau_c[-1, :, j],
                                   p.etr_params[-1, :, :],
                                   p.mtry_params[-1, :, :], None, j, p,
                                   'SS')
    error2 = household.FOC_labor(r, w, b_s, b_splus1, n_guess, bq,
                                 factor, T_H, theta, p.chi_n, p.e[:, j],
                                 p.tau_c[-1, :, j],
                                 p.etr_params[-1, :, :],
                                 p.mtrx_params[-1, :, :], None, j, p,
                                 'SS')

    # Put in constraints for consumption and savings.
    # According to the euler equations, they can be negative.  When
    # Chi_b is large, they will be.  This prevents that from happening.
    # I'm not sure if the constraints are needed for labor.
    # But we might as well put them in for now.
    mask1 = n_guess < 0
    mask2 = n_guess > p.ltilde
    mask3 = b_guess <= 0
    mask4 = np.isnan(n_guess)
    mask5 = np.isnan(b_guess)
    error2[mask1] = 1e14
    error2[mask2] = 1e14
    error1[mask3] = 1e14
    error1[mask5] = 1e14
    error2[mask4] = 1e14
    taxes = tax.total_taxes(r, w, b_s, n_guess, bq, factor, T_H, theta,
                            None, j, False, 'SS', p.e[:, j],
                            p.etr_params[-1, :, :], p)
    cons = household.get_cons(r, w, b_s, b_splus1, n_guess, bq, taxes,
                              p.e[:, j], p.tau_c[-1, :, j], p)
    mask6 = cons < 0
    error1[mask6] = 1e14

    return np.hstack((error1, error2))
예제 #4
0
파일: SS.py 프로젝트: githubxinwen/OG-JPN
def SS_solver(bmat, nmat, r, BQ, T_H, factor, Y, p, client,
              fsolve_flag=False):
    '''
    --------------------------------------------------------------------
    Solves for the steady state distribution of capital, labor, as well
    as w, r, T_H and the scaling factor, using a bisection method
    similar to TPI.
    --------------------------------------------------------------------

    INPUTS:
    b_guess_init = [S,J] array, initial guesses for savings
    n_guess_init = [S,J] array, initial guesses for labor supply
    wguess = scalar, initial guess for SS real wage rate
    rguess = scalar, initial guess for SS real interest rate
    T_Hguess = scalar, initial guess for lump sum transfer
    factorguess = scalar, initial guess for scaling factor to dollars
    chi_b = [J,] vector, chi^b_j, the utility weight on bequests
    chi_n = [S,] vector, chi^n_s utility weight on labor supply
    params = length X tuple, list of parameters
    iterative_params = length X tuple, list of parameters that determine
                       the convergence of the while loop
    tau_bq = [J,] vector, bequest tax rate
    rho = [S,] vector, mortality rates by age
    lambdas = [J,] vector, fraction of population with each ability type
    omega = [S,] vector, stationary population weights
    e =  [S,J] array, effective labor units by age and ability type


    OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION:
    euler_equation_solver()
    aggr.get_K()
    aggr.get_L()
    firm.get_Y()
    firm.get_r()
    firm.get_w()
    aggr.get_BQ()
    tax.replacement_rate_vals()
    aggr.revenue()
    utils.convex_combo()
    utils.pct_diff_func()


    OBJECTS CREATED WITHIN FUNCTION:
    b_guess = [S,] vector, initial guess at household savings
    n_guess = [S,] vector, initial guess at household labor supply
    b_s = [S,] vector, wealth enter period with
    b_splus1 = [S,] vector, household savings
    b_splus2 = [S,] vector, household savings one period ahead
    BQ = scalar, aggregate bequests to lifetime income group
    theta = scalar, replacement rate for social security benenfits
    error1 = [S,] vector, errors from FOC for savings
    error2 = [S,] vector, errors from FOC for labor supply
    tax1 = [S,] vector, total income taxes paid
    cons = [S,] vector, household consumption

    OBJECTS CREATED WITHIN FUNCTION - SMALL OPEN ONLY
    Bss = scalar, aggregate household wealth in the steady state
    BIss = scalar, aggregate household net investment in the steady state

    RETURNS: solutions = steady state values of b, n, w, r, factor,
                    T_H ((2*S*J+4)x1 array)

    OUTPUT: None
    --------------------------------------------------------------------
    '''
    # Rename the inputs
    if not p.budget_balance:
        if not p.baseline_spending:
            Y = T_H / p.alpha_T[-1]
    if p.small_open:
        r = p.hh_r[-1]

    dist = 10
    iteration = 0
    dist_vec = np.zeros(p.maxiter)
    maxiter_ss = p.maxiter
    nu_ss = p.nu

    if fsolve_flag:
        maxiter_ss = 1

    while (dist > p.mindist_SS) and (iteration < maxiter_ss):
        # Solve for the steady state levels of b and n, given w, r,
        # Y and factor
        if p.budget_balance:
            outer_loop_vars = (bmat, nmat, r, BQ, T_H, factor)
        else:
            outer_loop_vars = (bmat, nmat, r, BQ, Y, T_H, factor)

        (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
         new_w, new_T_H, new_Y, new_factor, new_BQ,
         average_income_model) =\
            inner_loop(outer_loop_vars, p, client)

        r = utils.convex_combo(new_r, r, nu_ss)
        factor = utils.convex_combo(new_factor, factor, nu_ss)
        BQ = utils.convex_combo(new_BQ, BQ, nu_ss)
        # bmat = utils.convex_combo(new_bmat, bmat, nu_ss)
        # nmat = utils.convex_combo(new_nmat, nmat, nu_ss)
        if not p.baseline_spending:
            T_H = utils.convex_combo(new_T_H, T_H, nu_ss)
            dist = np.array([utils.pct_diff_func(new_r, r)] +
                            list(utils.pct_diff_func(new_BQ, BQ)) +
                            [utils.pct_diff_func(new_T_H, T_H)] +
                            [utils.pct_diff_func(new_factor, factor)]).max()
        else:
            Y = utils.convex_combo(new_Y, Y, nu_ss)
            if Y != 0:
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [utils.pct_diff_func(new_Y, Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
            else:
                # If Y is zero (if there is no output), a percent difference
                # will throw NaN's, so we use an absolute difference
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [abs(new_Y - Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
        dist_vec[iteration] = dist
        # Similar to TPI: if the distance between iterations increases, then
        # decrease the value of nu to prevent cycling
        if iteration > 10:
            if dist_vec[iteration] - dist_vec[iteration - 1] > 0:
                nu_ss /= 2.0
                print('New value of nu:', nu_ss)
        iteration += 1
        print('Iteration: %02d' % iteration, ' Distance: ', dist)

    '''
    ------------------------------------------------------------------------
        Generate the SS values of variables, including euler errors
    ------------------------------------------------------------------------
    '''
    bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0)
    bssmat_splus1 = bmat
    nssmat = nmat

    rss = r
    r_gov_ss = fiscal.get_r_gov(rss, p)
    if p.budget_balance:
        r_hh_ss = rss
        Dss = 0.0
    else:
        Dss = p.debt_ratio_ss * Y
    Lss = aggr.get_L(nssmat, p, 'SS')
    Bss = aggr.get_K(bssmat_splus1, p, 'SS', False)
    K_demand_open_ss = firm.get_K(Lss, p.firm_r[-1], p, 'SS')
    D_f_ss = p.zeta_D[-1] * Dss
    D_d_ss = Dss - D_f_ss
    K_d_ss = Bss - D_d_ss
    if not p.small_open:
        K_f_ss = p.zeta_K[-1] * (K_demand_open_ss - Bss + D_d_ss)
        Kss = K_f_ss + K_d_ss
        # Note that implicity in this computation is that immigrants'
        # wealth is all in the form of private capital
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
        Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS')
    else:
        K_d_ss = Bss - D_d_ss
        K_f_ss = K_demand_open_ss - Bss + D_d_ss
        Kss = K_f_ss + K_d_ss
        InvestmentPlaceholder = np.zeros(bssmat_splus1.shape)
        Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS')
        BIss = aggr.get_I(bssmat_splus1, Bss, Bss, p, 'BI_SS')
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
    r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, Dss)
    wss = new_w
    BQss = new_BQ
    factor_ss = factor
    T_Hss = T_H
    bqssmat = household.get_bq(BQss, None, p, 'SS')

    Yss = firm.get_Y(Kss, Lss, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p)

    # Compute effective and marginal tax rates for all agents
    etr_params_3D = np.tile(np.reshape(
        p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    mtrx_params_3D = np.tile(np.reshape(
        p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])),
                             (1, p.J, 1))
    mtry_params_3D = np.tile(np.reshape(
        p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])),
                             (1, p.J, 1))
    mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True,
                             p.e, etr_params_3D, mtry_params_3D, p)
    mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False,
                             p.e, etr_params_3D, mtrx_params_3D, p)
    etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e,
                            etr_params_3D, p)

    taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat,
                            factor_ss, T_Hss, theta, None, None, False,
                            'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1,
                                nssmat, bqssmat, taxss,
                                p.e, p.tau_c[-1, :, :], p)
    yss_before_tax_mat = r_hh_ss * bssmat_s + wss * p.e * nssmat
    Css = aggr.get_C(cssmat, p, 'SS')

    (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css,
     business_revenue) =\
        aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat,
                     Yss, Lss, Kss, factor, theta, etr_params_3D, p,
                     'SS')
    debt_service_ss = r_gov_ss * Dss
    new_borrowing = Dss * ((1 + p.g_n_ss) * np.exp(p.g_y) - 1)
    # government spends such that it expands its debt at the same rate as GDP
    if p.budget_balance:
        Gss = 0.0
    else:
        Gss = total_revenue_ss + new_borrowing - (T_Hss + debt_service_ss)
        print('G components = ', new_borrowing, T_Hss, debt_service_ss)

    # Compute total investment (not just domestic)
    Iss_total = ((1 + p.g_n_ss) * np.exp(p.g_y) - 1 + p.delta) * Kss

    # solve resource constraint
    # net foreign borrowing
    print('Foreign debt holdings = ', D_f_ss)
    print('Foreign capital holdings = ', K_f_ss)
    new_borrowing_f = D_f_ss * (np.exp(p.g_y) * (1 + p.g_n_ss) - 1)
    debt_service_f = D_f_ss * r_hh_ss
    RC = aggr.resource_constraint(Yss, Css, Gss, I_d_ss, K_f_ss,
                                  new_borrowing_f, debt_service_f, r_hh_ss,
                                  p)
    print('resource constraint: ', RC)

    if Gss < 0:
        print('Steady state government spending is negative to satisfy'
              + ' budget')

    if ENFORCE_SOLUTION_CHECKS and (np.absolute(RC) >
                                    p.mindist_SS):
        print('Resource Constraint Difference:', RC)
        err = 'Steady state aggregate resource constraint not satisfied'
        raise RuntimeError(err)

    # check constraints
    household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde)

    euler_savings = euler_errors[:p.S, :]
    euler_labor_leisure = euler_errors[p.S:, :]
    print('Maximum error in labor FOC = ',
          np.absolute(euler_labor_leisure).max())
    print('Maximum error in savings FOC = ',
          np.absolute(euler_savings).max())

    '''
    ------------------------------------------------------------------------
        Return dictionary of SS results
    ------------------------------------------------------------------------
    '''
    output = {'Kss': Kss, 'K_f_ss': K_f_ss, 'K_d_ss': K_d_ss,
              'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss,
              'Iss_total': Iss_total, 'I_d_ss': I_d_ss, 'nssmat': nssmat,
              'Yss': Yss, 'Dss': Dss, 'D_f_ss': D_f_ss,
              'D_d_ss': D_d_ss, 'wss': wss, 'rss': rss,
              'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta,
              'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s,
              'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1,
              'yss_before_tax_mat': yss_before_tax_mat,
              'bqssmat': bqssmat, 'T_Hss': T_Hss, 'Gss': Gss,
              'total_revenue_ss': total_revenue_ss,
              'business_revenue': business_revenue,
              'IITpayroll_revenue': T_Iss,
              'T_Pss': T_Pss, 'T_BQss': T_BQss, 'T_Wss': T_Wss,
              'T_Css': T_Css, 'euler_savings': euler_savings,
              'debt_service_f': debt_service_f,
              'new_borrowing_f': new_borrowing_f,
              'debt_service_ss': debt_service_ss,
              'new_borrowing': new_borrowing,
              'euler_labor_leisure': euler_labor_leisure,
              'resource_constraint_error': RC,
              'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss}

    return output
예제 #5
0
파일: SS.py 프로젝트: githubxinwen/OG-JPN
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of
    the SS.  That is, given the guesses of the
    outer loop variables (r, w, Y, factor)
    this function solves the households'
    problems in the SS.

    Inputs:
        r          = [T,] vector, interest rate
        w          = [T,] vector, wage rate
        b          = [T,S,J] array, wealth holdings
        n          = [T,S,J] array, labor supply
        BQ         = [T,J] vector,  bequest amounts
        factor     = scalar, model income scaling factor
        Y        = [T,] vector, lump sum transfer amount(s)


    Functions called:
        euler_equation_solver()
        aggr.get_K()
        aggr.get_L()
        firm.get_Y()
        firm.get_r()
        firm.get_w()
        aggr.get_BQ()
        tax.replacement_rate_vals()
        aggr.revenue()

    Objects in function:


    Returns: euler_errors, bssmat, nssmat, new_r, new_w
             new_T_H, new_factor, new_BQ

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, T_H, factor = outer_loop_vars
    else:
        bssmat, nssmat, r, BQ, Y, T_H, factor = outer_loop_vars

    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
        D = 0
    else:
        D = p.debt_ratio_ss * Y
        K = firm.get_K_from_Y(Y, r, p, 'SS')
        r_hh = aggr.get_r_hh(r, r_gov, K, D)
    if p.small_open:
        r_hh = p.hh_r[-1]
    bq = household.get_bq(BQ, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], T_H, factor, j, p)
        lazy_values.append(delayed(opt.fsolve)(euler_equation_solver,
                                               guesses * .9,
                                               args=euler_params,
                                               xtol=MINIMIZER_TOL,
                                               full_output=True))
    results = compute(*lazy_values, scheduler=dask.multiprocessing.get,
                      num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    B = aggr.get_K(bssmat, p, 'SS', False)
    K_demand_open = firm.get_K(L, p.firm_r[-1], p, 'SS')
    D_f = p.zeta_D[-1] * D
    D_d = D - D_f
    if not p.small_open:
        K_d = B - D_d
        K_f = p.zeta_K[-1] * (K_demand_open - B + D_d)
        K = K_f + K_d
    else:
        # can remove this else statement by making small open the case where zeta_K = 1
        K_d = B - D_d
        K_f = K_demand_open - B + D_d
        K = K_f + K_d
    new_Y = firm.get_Y(K, L, p, 'SS')
    if p.budget_balance:
        Y = new_Y
    if not p.small_open:
        new_r = firm.get_r(Y, K, p, 'SS')
    else:
        new_r = p.firm_r[-1]
    new_w = firm.get_w_from_r(new_r, p, 'SS')

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) +
                   list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)

    if p.budget_balance:
        etr_params_3D = np.tile(np.reshape(
            p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])),
                                (1, p.J, 1))
        taxss = tax.total_taxes(new_r_hh, new_w, b_s, nssmat, new_bq,
                                factor, T_H, theta, None, None, False,
                                'SS', p.e, etr_params_3D, p)
        cssmat = household.get_cons(new_r_hh, new_w, b_s, bssmat,
                                    nssmat, new_bq, taxss,
                                    p.e, p.tau_c[-1, :, :], p)
        new_T_H, _, _, _, _, _, _ = aggr.revenue(
            new_r_hh, new_w, b_s, nssmat, new_bq, cssmat, new_Y, L, K,
            factor, theta, etr_params_3D, p, 'SS')
    elif p.baseline_spending:
        new_T_H = T_H
    else:
        new_T_H = p.alpha_T[-1] * new_Y

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_T_H, new_Y, new_factor, new_BQ, average_income_model
예제 #6
0
def test_replacement_rate_vals(n, w, factor, j, p, expected):
    # Test replacement rate function, making sure to trigger all three
    # cases of AIME

    theta = tax.replacement_rate_vals(n, w, factor, j, p)
    assert np.allclose(theta, expected)
예제 #7
0
파일: SS.py 프로젝트: FrancoCalle/OG-USA
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of the SS.  That is, given
    the guesses of the outer loop variables (r, w, TR, factor) this
    function solves the households' problems in the SS.

    Args:
        outer_loop_vars (tuple): tuple of outer loop variables,
            (bssmat, nssmat, r, BQ, TR, factor) or
            (bssmat, nssmat, r, BQ, Y, TR, factor)
        bssmat (Numpy array): initial guess at savings, size = SxJ
        nssmat (Numpy array): initial guess at labor supply, size = SxJ
        BQ (array_like): aggregate bequest amount(s)
        Y (scalar): real GDP
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        w (scalar): real wage rate
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        (tuple): results from household solution:

            * euler_errors (Numpy array): errors terms from FOCs,
                size = 2SxJ
            * bssmat (Numpy array): savings, size = SxJ
            * nssmat (Numpy array): labor supply, size = SxJ
            * new_r (scalar): real interest rate on firm capital
            * new_r_gov (scalar): real interest rate on government debt
            * new_r_hh (scalar): real interest rate on household
                portfolio
            * new_w (scalar): real wage rate
            * new_TR (scalar): lump sum transfer amount
            * new_Y (scalar): real GDP
            * new_factor (scalar): scaling factor converting model
                units to dollars
            * new_BQ (array_like): aggregate bequest amount(s)
            * average_income_model (scalar): average income in model
                units

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, TR, factor = outer_loop_vars
    else:
        bssmat, nssmat, r, BQ, Y, TR, factor = outer_loop_vars

    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
        D = 0
    else:
        D = p.debt_ratio_ss * Y
        K = firm.get_K_from_Y(Y, r, p, 'SS')
        r_hh = aggr.get_r_hh(r, r_gov, K, D)
    if p.small_open:
        r_hh = p.hh_r[-1]
    bq = household.get_bq(BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], tr[:, j], factor, j, p)
        lazy_values.append(delayed(opt.fsolve)(euler_equation_solver,
                                               guesses * .9,
                                               args=euler_params,
                                               xtol=MINIMIZER_TOL,
                                               full_output=True))
    results = compute(*lazy_values, scheduler=dask.multiprocessing.get,
                      num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    B = aggr.get_B(bssmat, p, 'SS', False)
    K_demand_open = firm.get_K(L, p.firm_r[-1], p, 'SS')
    D_f = p.zeta_D[-1] * D
    D_d = D - D_f
    if not p.small_open:
        K_d = B - D_d
        K_f = p.zeta_K[-1] * (K_demand_open - B + D_d)
        K = K_f + K_d
    else:
        # can remove this else statement by making small open the case
        # where zeta_K = 1
        K_d = B - D_d
        K_f = K_demand_open - B + D_d
        K = K_f + K_d
    new_Y = firm.get_Y(K, L, p, 'SS')
    if p.budget_balance:
        Y = new_Y
    if not p.small_open:
        new_r = firm.get_r(Y, K, p, 'SS')
    else:
        new_r = p.firm_r[-1]
    new_w = firm.get_w_from_r(new_r, p, 'SS')

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) +
                   list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)

    if p.budget_balance:
        etr_params_3D = np.tile(np.reshape(
            p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])),
                                (1, p.J, 1))
        taxss = tax.total_taxes(new_r_hh, new_w, b_s, nssmat, new_bq,
                                factor, tr, theta, None, None, False,
                                'SS', p.e, etr_params_3D, p)
        cssmat = household.get_cons(new_r_hh, new_w, b_s, bssmat,
                                    nssmat, new_bq, taxss,
                                    p.e, p.tau_c[-1, :, :], p)
        new_TR, _, _, _, _, _, _ = aggr.revenue(
            new_r_hh, new_w, b_s, nssmat, new_bq, cssmat, new_Y, L, K,
            factor, theta, etr_params_3D, p, 'SS')
    elif p.baseline_spending:
        new_TR = TR
    else:
        new_TR = p.alpha_T[-1] * new_Y

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_TR, new_Y, new_factor, new_BQ, average_income_model
예제 #8
0
파일: SS.py 프로젝트: FrancoCalle/OG-USA
def SS_solver(bmat, nmat, r, BQ, TR, factor, Y, p, client,
              fsolve_flag=False):
    '''
    Solves for the steady state distribution of capital, labor, as well
    as w, r, TR and the scaling factor, using functional iteration.

    Args:
        bmat (Numpy array): initial guess at savings, size = SxJ
        nmat (Numpy array): initial guess at labor supply, size = SxJ
        r (scalar): real interest rate
        BQ (array_like): aggregate bequest amount(s)
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        Y (scalar): real GDP
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        output (dictionary): dictionary with steady state solution
            results

    '''
    # Rename the inputs
    if not p.budget_balance:
        if not p.baseline_spending:
            Y = TR / p.alpha_T[-1]
    if p.small_open:
        r = p.hh_r[-1]

    dist = 10
    iteration = 0
    dist_vec = np.zeros(p.maxiter)
    maxiter_ss = p.maxiter
    nu_ss = p.nu

    if fsolve_flag:
        maxiter_ss = 1

    while (dist > p.mindist_SS) and (iteration < maxiter_ss):
        # Solve for the steady state levels of b and n, given w, r,
        # Y and factor
        if p.budget_balance:
            outer_loop_vars = (bmat, nmat, r, BQ, TR, factor)
        else:
            outer_loop_vars = (bmat, nmat, r, BQ, Y, TR, factor)

        (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
         new_w, new_TR, new_Y, new_factor, new_BQ,
         average_income_model) =\
            inner_loop(outer_loop_vars, p, client)

        r = utils.convex_combo(new_r, r, nu_ss)
        factor = utils.convex_combo(new_factor, factor, nu_ss)
        BQ = utils.convex_combo(new_BQ, BQ, nu_ss)
        # bmat = utils.convex_combo(new_bmat, bmat, nu_ss)
        # nmat = utils.convex_combo(new_nmat, nmat, nu_ss)
        if not p.baseline_spending:
            TR = utils.convex_combo(new_TR, TR, nu_ss)
            dist = np.array([utils.pct_diff_func(new_r, r)] +
                            list(utils.pct_diff_func(new_BQ, BQ)) +
                            [utils.pct_diff_func(new_TR, TR)] +
                            [utils.pct_diff_func(new_factor, factor)]).max()
        else:
            Y = utils.convex_combo(new_Y, Y, nu_ss)
            if Y != 0:
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [utils.pct_diff_func(new_Y, Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
            else:
                # If Y is zero (if there is no output), a percent difference
                # will throw NaN's, so we use an absolute difference
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [abs(new_Y - Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
        dist_vec[iteration] = dist
        # Similar to TPI: if the distance between iterations increases, then
        # decrease the value of nu to prevent cycling
        if iteration > 10:
            if dist_vec[iteration] - dist_vec[iteration - 1] > 0:
                nu_ss /= 2.0
                print('New value of nu:', nu_ss)
        iteration += 1
        print('Iteration: %02d' % iteration, ' Distance: ', dist)

    # Generate the SS values of variables, including euler errors
    bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0)
    bssmat_splus1 = bmat
    nssmat = nmat

    rss = r
    r_gov_ss = fiscal.get_r_gov(rss, p)
    if p.budget_balance:
        r_hh_ss = rss
        Dss = 0.0
    else:
        Dss = p.debt_ratio_ss * Y
    Lss = aggr.get_L(nssmat, p, 'SS')
    Bss = aggr.get_B(bssmat_splus1, p, 'SS', False)
    K_demand_open_ss = firm.get_K(Lss, p.firm_r[-1], p, 'SS')
    D_f_ss = p.zeta_D[-1] * Dss
    D_d_ss = Dss - D_f_ss
    K_d_ss = Bss - D_d_ss
    if not p.small_open:
        K_f_ss = p.zeta_K[-1] * (K_demand_open_ss - Bss + D_d_ss)
        Kss = K_f_ss + K_d_ss
        # Note that implicity in this computation is that immigrants'
        # wealth is all in the form of private capital
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
        Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS')
    else:
        K_d_ss = Bss - D_d_ss
        K_f_ss = K_demand_open_ss - Bss + D_d_ss
        Kss = K_f_ss + K_d_ss
        InvestmentPlaceholder = np.zeros(bssmat_splus1.shape)
        Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS')
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
    r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, Dss)
    wss = new_w
    BQss = new_BQ
    factor_ss = factor
    TR_ss = TR
    bqssmat = household.get_bq(BQss, None, p, 'SS')
    trssmat = household.get_tr(TR_ss, None, p, 'SS')

    Yss = firm.get_Y(Kss, Lss, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p)

    # Compute effective and marginal tax rates for all agents
    etr_params_3D = np.tile(np.reshape(
        p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    mtrx_params_3D = np.tile(np.reshape(
        p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])),
                             (1, p.J, 1))
    mtry_params_3D = np.tile(np.reshape(
        p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])),
                             (1, p.J, 1))
    mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True,
                             p.e, etr_params_3D, mtry_params_3D, p)
    mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False,
                             p.e, etr_params_3D, mtrx_params_3D, p)
    etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e,
                            etr_params_3D, p)

    taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat,
                            factor_ss, trssmat, theta, None, None, False,
                            'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1,
                                nssmat, bqssmat, taxss,
                                p.e, p.tau_c[-1, :, :], p)
    yss_before_tax_mat = r_hh_ss * bssmat_s + wss * p.e * nssmat
    Css = aggr.get_C(cssmat, p, 'SS')

    (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css,
     business_revenue) =\
        aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat,
                     Yss, Lss, Kss, factor, theta, etr_params_3D, p,
                     'SS')
    debt_service_ss = r_gov_ss * Dss
    new_borrowing = Dss * ((1 + p.g_n_ss) * np.exp(p.g_y) - 1)
    # government spends such that it expands its debt at the same rate as GDP
    if p.budget_balance:
        Gss = 0.0
    else:
        Gss = total_revenue_ss + new_borrowing - (TR_ss + debt_service_ss)
        print('G components = ', new_borrowing, TR_ss, debt_service_ss)

    # Compute total investment (not just domestic)
    Iss_total = ((1 + p.g_n_ss) * np.exp(p.g_y) - 1 + p.delta) * Kss

    # solve resource constraint
    # net foreign borrowing
    print('Foreign debt holdings = ', D_f_ss)
    print('Foreign capital holdings = ', K_f_ss)
    new_borrowing_f = D_f_ss * (np.exp(p.g_y) * (1 + p.g_n_ss) - 1)
    debt_service_f = D_f_ss * r_hh_ss
    RC = aggr.resource_constraint(Yss, Css, Gss, I_d_ss, K_f_ss,
                                  new_borrowing_f, debt_service_f, r_hh_ss,
                                  p)
    print('resource constraint: ', RC)

    if Gss < 0:
        print('Steady state government spending is negative to satisfy'
              + ' budget')

    if ENFORCE_SOLUTION_CHECKS and (np.absolute(RC) >
                                    p.mindist_SS):
        print('Resource Constraint Difference:', RC)
        err = 'Steady state aggregate resource constraint not satisfied'
        raise RuntimeError(err)

    # check constraints
    household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde)

    euler_savings = euler_errors[:p.S, :]
    euler_labor_leisure = euler_errors[p.S:, :]
    print('Maximum error in labor FOC = ',
          np.absolute(euler_labor_leisure).max())
    print('Maximum error in savings FOC = ',
          np.absolute(euler_savings).max())

    # Return dictionary of SS results
    output = {'Kss': Kss, 'K_f_ss': K_f_ss, 'K_d_ss': K_d_ss,
              'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss,
              'Iss_total': Iss_total, 'I_d_ss': I_d_ss, 'nssmat': nssmat,
              'Yss': Yss, 'Dss': Dss, 'D_f_ss': D_f_ss,
              'D_d_ss': D_d_ss, 'wss': wss, 'rss': rss,
              'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta,
              'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s,
              'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1,
              'yss_before_tax_mat': yss_before_tax_mat,
              'bqssmat': bqssmat, 'TR_ss': TR_ss, 'trssmat': trssmat,
              'Gss': Gss, 'total_revenue_ss': total_revenue_ss,
              'business_revenue': business_revenue,
              'IITpayroll_revenue': T_Iss,
              'T_Pss': T_Pss, 'T_BQss': T_BQss, 'T_Wss': T_Wss,
              'T_Css': T_Css, 'euler_savings': euler_savings,
              'debt_service_f': debt_service_f,
              'new_borrowing_f': new_borrowing_f,
              'debt_service_ss': debt_service_ss,
              'new_borrowing': new_borrowing,
              'euler_labor_leisure': euler_labor_leisure,
              'resource_constraint_error': RC,
              'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss}

    return output
예제 #9
0
파일: SS.py 프로젝트: rickecon/OG-USA
def euler_equation_solver(guesses, *args):
    '''
    --------------------------------------------------------------------
    Finds the euler errors for certain b and n, one ability type at a time.
    --------------------------------------------------------------------

    INPUTS:
    guesses = [2S,] vector, initial guesses for b and n
    r = scalar, real interest rate
    w = scalar, real wage rate
    T_H = scalar, lump sum transfer
    factor = scalar, scaling factor converting model units to dollars
    j = integer, ability group
    params = length 21 tuple, list of parameters
    chi_b = [J,] vector, chi^b_j, the utility weight on bequests
    chi_n = [S,] vector, chi^n_s utility weight on labor supply
    tau_bq = scalar, bequest tax rate
    rho = [S,] vector, mortality rates by age
    lambdas = [J,] vector, fraction of population with each ability type
    omega_SS = [S,] vector, stationary population weights
    e =  [S,J] array, effective labor units by age and ability type
    tax_params = length 5 tuple, (tax_func_type, analytical_mtrs,
                 etr_params, mtrx_params, mtry_params)
    tax_func_type   = string, type of tax function used
    analytical_mtrs = boolean, =True if use analytical_mtrs, =False if
                       use estimated MTRs
    etr_params      = [S,BW,#tax params] array, parameters for effective
                      tax rate function
    mtrx_params     = [S,BW,#tax params] array, parameters for marginal
                      tax rate on labor income function
    mtry_params     = [S,BW,#tax params] array, parameters for marginal
                      tax rate on capital income function

    OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION:
    aggr.get_BQ()
    tax.replacement_rate_vals()
    household.FOC_savings()
    household.FOC_labor()
    tax.total_taxes()
    household.get_cons()

    OBJECTS CREATED WITHIN FUNCTION:
    b_guess = [S,] vector, initial guess at household savings
    n_guess = [S,] vector, initial guess at household labor supply
    b_s = [S,] vector, wealth enter period with
    b_splus1 = [S,] vector, household savings
    BQ = scalar, aggregate bequests to lifetime income group
    theta = scalar, replacement rate for social security benenfits
    error1 = [S,] vector, errors from FOC for savings
    error2 = [S,] vector, errors from FOC for labor supply
    tax1 = [S,] vector, total income taxes paid
    cons = [S,] vector, household consumption

    RETURNS: 2Sx1 list of euler errors

    OUTPUT: None
    --------------------------------------------------------------------
    '''
    (r, w, bq, T_H, factor, j, p) = args

    b_guess = np.array(guesses[:p.S])
    n_guess = np.array(guesses[p.S:])
    b_s = np.array([0] + list(b_guess[:-1]))
    b_splus1 = b_guess

    theta = tax.replacement_rate_vals(n_guess, w, factor, j, p)

    error1 = household.FOC_savings(r, w, b_s, b_splus1, n_guess, bq,
                                   factor, T_H, theta, p.e[:, j], p.rho,
                                   p.tau_c[-1, :, j],
                                   p.etr_params[-1, :, :],
                                   p.mtry_params[-1, :, :], None, j, p,
                                   'SS')
    error2 = household.FOC_labor(r, w, b_s, b_splus1, n_guess, bq,
                                 factor, T_H, theta, p.chi_n, p.e[:, j],
                                 p.tau_c[-1, :, j],
                                 p.etr_params[-1, :, :],
                                 p.mtrx_params[-1, :, :], None, j, p,
                                 'SS')

    # Put in constraints for consumption and savings.
    # According to the euler equations, they can be negative.  When
    # Chi_b is large, they will be.  This prevents that from happening.
    # I'm not sure if the constraints are needed for labor.
    # But we might as well put them in for now.
    mask1 = n_guess < 0
    mask2 = n_guess > p.ltilde
    mask3 = b_guess <= 0
    mask4 = np.isnan(n_guess)
    mask5 = np.isnan(b_guess)
    error2[mask1] = 1e14
    error2[mask2] = 1e14
    error1[mask3] = 1e14
    error1[mask5] = 1e14
    error2[mask4] = 1e14
    taxes = tax.total_taxes(r, w, b_s, n_guess, bq, factor, T_H, theta,
                            None, j, False, 'SS', p.e[:, j],
                            p.etr_params[-1, :, :], p)
    cons = household.get_cons(r, w, b_s, b_splus1, n_guess, bq, taxes,
                              p.e[:, j], p.tau_c[-1, :, j], p)
    mask6 = cons < 0
    error1[mask6] = 1e14

    return np.hstack((error1, error2))
예제 #10
0
파일: SS.py 프로젝트: rickecon/OG-USA
def SS_solver(bmat, nmat, r, BQ, T_H, factor, Y, p, client,
              fsolve_flag=False):
    '''
    --------------------------------------------------------------------
    Solves for the steady state distribution of capital, labor, as well
    as w, r, T_H and the scaling factor, using a bisection method
    similar to TPI.
    --------------------------------------------------------------------

    INPUTS:
    b_guess_init = [S,J] array, initial guesses for savings
    n_guess_init = [S,J] array, initial guesses for labor supply
    wguess = scalar, initial guess for SS real wage rate
    rguess = scalar, initial guess for SS real interest rate
    T_Hguess = scalar, initial guess for lump sum transfer
    factorguess = scalar, initial guess for scaling factor to dollars
    chi_b = [J,] vector, chi^b_j, the utility weight on bequests
    chi_n = [S,] vector, chi^n_s utility weight on labor supply
    params = length X tuple, list of parameters
    iterative_params = length X tuple, list of parameters that determine
                       the convergence of the while loop
    tau_bq = [J,] vector, bequest tax rate
    rho = [S,] vector, mortality rates by age
    lambdas = [J,] vector, fraction of population with each ability type
    omega = [S,] vector, stationary population weights
    e =  [S,J] array, effective labor units by age and ability type


    OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION:
    euler_equation_solver()
    aggr.get_K()
    aggr.get_L()
    firm.get_Y()
    firm.get_r()
    firm.get_w()
    aggr.get_BQ()
    tax.replacement_rate_vals()
    aggr.revenue()
    utils.convex_combo()
    utils.pct_diff_func()


    OBJECTS CREATED WITHIN FUNCTION:
    b_guess = [S,] vector, initial guess at household savings
    n_guess = [S,] vector, initial guess at household labor supply
    b_s = [S,] vector, wealth enter period with
    b_splus1 = [S,] vector, household savings
    b_splus2 = [S,] vector, household savings one period ahead
    BQ = scalar, aggregate bequests to lifetime income group
    theta = scalar, replacement rate for social security benenfits
    error1 = [S,] vector, errors from FOC for savings
    error2 = [S,] vector, errors from FOC for labor supply
    tax1 = [S,] vector, total income taxes paid
    cons = [S,] vector, household consumption

    OBJECTS CREATED WITHIN FUNCTION - SMALL OPEN ONLY
    Bss = scalar, aggregate household wealth in the steady state
    BIss = scalar, aggregate household net investment in the steady state

    RETURNS: solutions = steady state values of b, n, w, r, factor,
                    T_H ((2*S*J+4)x1 array)

    OUTPUT: None
    --------------------------------------------------------------------
    '''
    # Rename the inputs
    if not p.budget_balance:
        if not p.baseline_spending:
            Y = T_H / p.alpha_T[-1]
    if p.small_open:
        r = p.hh_r[-1]

    dist = 10
    iteration = 0
    dist_vec = np.zeros(p.maxiter)
    maxiter_ss = p.maxiter
    nu_ss = p.nu

    if fsolve_flag:
        maxiter_ss = 1

    while (dist > p.mindist_SS) and (iteration < maxiter_ss):
        # Solve for the steady state levels of b and n, given w, r,
        # Y and factor
        if p.budget_balance:
            outer_loop_vars = (bmat, nmat, r, BQ, T_H, factor)
        else:
            outer_loop_vars = (bmat, nmat, r, BQ, Y, T_H, factor)

        (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
         new_w, new_T_H, new_Y, new_factor, new_BQ,
         average_income_model) =\
            inner_loop(outer_loop_vars, p, client)

        r = utils.convex_combo(new_r, r, nu_ss)
        factor = utils.convex_combo(new_factor, factor, nu_ss)
        BQ = utils.convex_combo(new_BQ, BQ, nu_ss)
        # bmat = utils.convex_combo(new_bmat, bmat, nu_ss)
        # nmat = utils.convex_combo(new_nmat, nmat, nu_ss)
        if p.budget_balance:
            T_H = utils.convex_combo(new_T_H, T_H, nu_ss)
            dist = np.array([utils.pct_diff_func(new_r, r)] +
                            list(utils.pct_diff_func(new_BQ, BQ)) +
                            [utils.pct_diff_func(new_T_H, T_H)] +
                            [utils.pct_diff_func(new_factor, factor)]).max()
        else:
            Y = utils.convex_combo(new_Y, Y, nu_ss)
            if Y != 0:
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [utils.pct_diff_func(new_Y, Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
            else:
                # If Y is zero (if there is no output), a percent difference
                # will throw NaN's, so we use an absoluate difference
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [abs(new_Y - Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
        dist_vec[iteration] = dist
        # Similar to TPI: if the distance between iterations increases, then
        # decrease the value of nu to prevent cycling
        if iteration > 10:
            if dist_vec[iteration] - dist_vec[iteration - 1] > 0:
                nu_ss /= 2.0
                print('New value of nu:', nu_ss)
        iteration += 1
        print('Iteration: %02d' % iteration, ' Distance: ', dist)

    '''
    ------------------------------------------------------------------------
        Generate the SS values of variables, including euler errors
    ------------------------------------------------------------------------
    '''
    bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0)
    bssmat_splus1 = bmat
    nssmat = nmat

    rss = r
    r_gov_ss = fiscal.get_r_gov(rss, p)
    if p.budget_balance:
        r_hh_ss = rss
        debt_ss = 0.0
    else:
        debt_ss = p.debt_ratio_ss * Y
    Lss = aggr.get_L(nssmat, p, 'SS')
    if not p.small_open:
        Bss = aggr.get_K(bssmat_splus1, p, 'SS', False)
        Kss = Bss - debt_ss
        Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS')
    else:
        # Compute capital (K) and wealth (B) separately
        Kss = firm.get_K(Lss, p.firm_r[-1], p, 'SS')
        InvestmentPlaceholder = np.zeros(bssmat_splus1.shape)
        Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS')
        Bss = aggr.get_K(bssmat_splus1, p, 'SS', False)
        BIss = aggr.get_I(bssmat_splus1, Bss, Bss, p, 'BI_SS')

    if p.budget_balance:
        r_hh_ss = rss
    else:
        r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, debt_ss)
    if p.small_open:
        r_hh_ss = p.hh_r[-1]
    wss = new_w
    BQss = new_BQ
    factor_ss = factor
    T_Hss = T_H
    bqssmat = household.get_bq(BQss, None, p, 'SS')

    Yss = firm.get_Y(Kss, Lss, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p)

    # Compute effective and marginal tax rates for all agents
    etr_params_3D = np.tile(np.reshape(
        p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    mtrx_params_3D = np.tile(np.reshape(
        p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])),
                             (1, p.J, 1))
    mtry_params_3D = np.tile(np.reshape(
        p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])),
                             (1, p.J, 1))
    mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True,
                             p.e, etr_params_3D, mtry_params_3D, p)
    mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False,
                             p.e, etr_params_3D, mtrx_params_3D, p)
    etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e,
                            etr_params_3D, p)

    taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat,
                            factor_ss, T_Hss, theta, None, None, False,
                            'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1,
                                nssmat, bqssmat, taxss,
                                p.e, p.tau_c[-1, :, :], p)
    Css = aggr.get_C(cssmat, p, 'SS')

    (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css,
     business_revenue) =\
        aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat,
                     Yss, Lss, Kss, factor, theta, etr_params_3D, p,
                     'SS')
    debt_service_ss = r_gov_ss * p.debt_ratio_ss * Yss
    new_borrowing = p.debt_ratio_ss * Yss * ((1 + p.g_n_ss) *
                                             np.exp(p.g_y) - 1)
    # government spends such that it expands its debt at the same rate as GDP
    if p.budget_balance:
        Gss = 0.0
    else:
        Gss = total_revenue_ss + new_borrowing - (T_Hss + debt_service_ss)
        print('G components = ', new_borrowing, T_Hss, debt_service_ss)

    # Compute total investment (not just domestic)
    Iss_total = p.delta * Kss

    # solve resource constraint
    if p.small_open:
        # include term for current account
        resource_constraint = (Yss + new_borrowing - (Css + BIss + Gss)
                               + (p.hh_r[-1] * Bss -
                                  (p.delta + p.firm_r[-1]) *
                                  Kss - debt_service_ss))
        print('Yss= ', Yss, '\n', 'Css= ', Css, '\n', 'Bss = ', Bss,
              '\n', 'BIss = ', BIss, '\n', 'Kss = ', Kss, '\n', 'Iss = ',
              Iss, '\n', 'Lss = ', Lss, '\n', 'T_H = ', T_H, '\n',
              'Gss= ', Gss)
        print('D/Y:', debt_ss / Yss, 'T/Y:', T_Hss / Yss, 'G/Y:',
              Gss / Yss, 'Rev/Y:', total_revenue_ss / Yss,
              'Int payments to GDP:', (r_gov_ss * debt_ss) / Yss)
        print('resource constraint: ', resource_constraint)
    else:
        resource_constraint = Yss - (Css + Iss + Gss)
        print('Yss= ', Yss, '\n', 'Gss= ', Gss, '\n', 'Css= ', Css, '\n',
              'Kss = ', Kss, '\n', 'Iss = ', Iss, '\n', 'Lss = ', Lss,
              '\n', 'Debt service = ', debt_service_ss)
        print('D/Y:', debt_ss / Yss, 'T/Y:', T_Hss / Yss, 'G/Y:',
              Gss / Yss, 'Rev/Y:', total_revenue_ss / Yss, 'business rev/Y: ',
              business_revenue / Yss, 'Int payments to GDP:',
              (r_gov_ss * debt_ss) / Yss)
        print('Check SS budget: ', Gss - (np.exp(p.g_y) *
                                          (1 + p.g_n_ss) - 1 - r_gov_ss)
              * debt_ss - total_revenue_ss + T_Hss)
        print('resource constraint: ', resource_constraint)

    if Gss < 0:
        print('Steady state government spending is negative to satisfy'
              + ' budget')

    if ENFORCE_SOLUTION_CHECKS and (np.absolute(resource_constraint) >
                                    p.mindist_SS):
        print('Resource Constraint Difference:', resource_constraint)
        err = 'Steady state aggregate resource constraint not satisfied'
        raise RuntimeError(err)

    # check constraints
    household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde)

    euler_savings = euler_errors[:p.S, :]
    euler_labor_leisure = euler_errors[p.S:, :]
    print('Maximum error in labor FOC = ',
          np.absolute(euler_labor_leisure).max())
    print('Maximum error in savings FOC = ',
          np.absolute(euler_savings).max())

    '''
    ------------------------------------------------------------------------
        Return dictionary of SS results
    ------------------------------------------------------------------------
    '''
    output = {'Kss': Kss, 'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss,
              'Iss_total': Iss_total, 'nssmat': nssmat, 'Yss': Yss,
              'Dss': debt_ss, 'wss': wss, 'rss': rss,
              'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta,
              'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s,
              'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1,
              'bqssmat': bqssmat, 'T_Hss': T_Hss, 'Gss': Gss,
              'total_revenue_ss': total_revenue_ss,
              'business_revenue': business_revenue,
              'IITpayroll_revenue': T_Iss,
              'T_Pss': T_Pss, 'T_BQss': T_BQss, 'T_Wss': T_Wss,
              'T_Css': T_Css, 'euler_savings': euler_savings,
              'euler_labor_leisure': euler_labor_leisure,
              'resource_constraint_error': resource_constraint,
              'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss}

    return output
예제 #11
0
파일: SS.py 프로젝트: rickecon/OG-USA
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of
    the SS.  That is, given the guesses of the
    outer loop variables (r, w, Y, factor)
    this function solves the households'
    problems in the SS.

    Inputs:
        r          = [T,] vector, interest rate
        w          = [T,] vector, wage rate
        b          = [T,S,J] array, wealth holdings
        n          = [T,S,J] array, labor supply
        BQ         = [T,J] vector,  bequest amounts
        factor     = scalar, model income scaling factor
        Y        = [T,] vector, lump sum transfer amount(s)


    Functions called:
        euler_equation_solver()
        aggr.get_K()
        aggr.get_L()
        firm.get_Y()
        firm.get_r()
        firm.get_w()
        aggr.get_BQ()
        tax.replacement_rate_vals()
        aggr.revenue()

    Objects in function:


    Returns: euler_errors, bssmat, nssmat, new_r, new_w
             new_T_H, new_factor, new_BQ

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, T_H, factor = outer_loop_vars
    else:
        bssmat, nssmat, r, BQ, Y, T_H, factor = outer_loop_vars

    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
        D = 0
    else:
        D = p.debt_ratio_ss * Y
        K = firm.get_K_from_Y(Y, r, p, 'SS')
        r_hh = aggr.get_r_hh(r, r_gov, K, D)
    if p.small_open:
        r_hh = p.hh_r[-1]
    bq = household.get_bq(BQ, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], T_H, factor, j, p)
        lazy_values.append(delayed(opt.fsolve)(euler_equation_solver,
                                               guesses * .9,
                                               args=euler_params,
                                               xtol=MINIMIZER_TOL,
                                               full_output=True))
    results = compute(*lazy_values, scheduler=dask.multiprocessing.get,
                      num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    if not p.small_open:
        B = aggr.get_K(bssmat, p, 'SS', False)
        if p.budget_balance:
            K = B
        else:
            K = B - D
    else:
        K = firm.get_K(L, r, p, 'SS')
    new_Y = firm.get_Y(K, L, p, 'SS')
    if p.budget_balance:
        Y = new_Y
    if not p.small_open:
        new_r = firm.get_r(Y, K, p, 'SS')
    else:
        new_r = p.firm_r[-1]
    new_w = firm.get_w_from_r(new_r, p, 'SS')
    print('inner factor prices: ', new_r, new_w)

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) +
                   list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    if p.small_open:
        new_r_hh = p.hh_r[-1]
    else:
        new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)

    if p.budget_balance:
        etr_params_3D = np.tile(np.reshape(
            p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])),
                                (1, p.J, 1))
        taxss = tax.total_taxes(new_r_hh, new_w, b_s, nssmat, new_bq,
                                factor, T_H, theta, None, None, False,
                                'SS', p.e, etr_params_3D, p)
        cssmat = household.get_cons(new_r_hh, new_w, b_s, bssmat,
                                    nssmat, new_bq, taxss,
                                    p.e, p.tau_c[-1, :, :], p)
        new_T_H, _, _, _, _, _, _ = aggr.revenue(
            new_r_hh, new_w, b_s, nssmat, new_bq, cssmat, new_Y, L, K,
            factor, theta, etr_params_3D, p, 'SS')
    elif p.baseline_spending:
        new_T_H = T_H
    else:
        new_T_H = p.alpha_T[-1] * new_Y

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_T_H, new_Y, new_factor, new_BQ, average_income_model
예제 #12
0
파일: SS.py 프로젝트: prrathi/OG-USA
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of the SS.  That is, given
    the guesses of the outer loop variables (r, w, TR, factor) this
    function solves the households' problems in the SS.

    Args:
        outer_loop_vars (tuple): tuple of outer loop variables,
            (bssmat, nssmat, r, BQ, TR, factor) or
            (bssmat, nssmat, r, BQ, Y, TR, factor)
        bssmat (Numpy array): initial guess at savings, size = SxJ
        nssmat (Numpy array): initial guess at labor supply, size = SxJ
        BQ (array_like): aggregate bequest amount(s)
        Y (scalar): real GDP
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        w (scalar): real wage rate
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        (tuple): results from household solution:

            * euler_errors (Numpy array): errors terms from FOCs,
                size = 2SxJ
            * bssmat (Numpy array): savings, size = SxJ
            * nssmat (Numpy array): labor supply, size = SxJ
            * new_r (scalar): real interest rate on firm capital
            * new_r_gov (scalar): real interest rate on government debt
            * new_r_hh (scalar): real interest rate on household
                portfolio
            * new_w (scalar): real wage rate
            * new_TR (scalar): lump sum transfer amount
            * new_Y (scalar): real GDP
            * new_factor (scalar): scaling factor converting model
                units to dollars
            * new_BQ (array_like): aggregate bequest amount(s)
            * average_income_model (scalar): average income in model
                units

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, TR, factor = outer_loop_vars
        r_hh = r
        Y = 1.0  # placeholder
        K = 1.0  # placeholder
    else:
        bssmat, nssmat, r, BQ, Y, TR, factor = outer_loop_vars
        K = firm.get_K_from_Y(Y, r, p, 'SS')
    # initialize array for euler errors
    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    D, D_d, D_f, new_borrowing, debt_service, new_borrowing_f =\
        fiscal.get_D_ss(r_gov, Y, p)
    r_hh = aggr.get_r_hh(r, r_gov, K, D)
    bq = household.get_bq(BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], tr[:, j], factor, j, p)
        lazy_values.append(delayed(opt.fsolve)(euler_equation_solver,
                                               guesses * .9,
                                               args=euler_params,
                                               xtol=MINIMIZER_TOL,
                                               full_output=True))
    if client:
        futures = client.compute(lazy_values, num_workers=p.num_workers)
        results = client.gather(futures)
    else:
        results = results = compute(
            *lazy_values, scheduler=dask.multiprocessing.get,
            num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    B = aggr.get_B(bssmat, p, 'SS', False)
    K_demand_open = firm.get_K(L, p.world_int_rate[-1], p, 'SS')
    K, K_d, K_f = aggr.get_K_splits(B, K_demand_open, D_d, p.zeta_K[-1])
    Y = firm.get_Y(K, L, p, 'SS')
    if p.zeta_K[-1] == 1.0:
        new_r = p.world_int_rate[-1]
    else:
        new_r = firm.get_r(Y, K, p, 'SS')
    new_w = firm.get_w_from_r(new_r, p, 'SS')

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) +
                   list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)
    etr_params_3D = np.tile(
        np.reshape(p.etr_params[-1, :, :],
                   (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    taxss = tax.net_taxes(
        new_r_hh, new_w, b_s, nssmat, new_bq, factor, tr, theta, None,
        None, False, 'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(
        new_r_hh, new_w, b_s, bssmat, nssmat, new_bq, taxss, p.e,
        p.tau_c[-1, :, :], p)
    total_tax_revenue, _, agg_pension_outlays, _, _, _, _, _, _ =\
        aggr.revenue(new_r_hh, new_w, b_s, nssmat, new_bq, cssmat, Y, L,
                     K, factor, theta, etr_params_3D, p, 'SS')
    G = fiscal.get_G_ss(Y, total_tax_revenue, agg_pension_outlays, TR,
                        new_borrowing, debt_service, p)
    new_TR = fiscal.get_TR(Y, TR, G, total_tax_revenue,
                           agg_pension_outlays, p, 'SS')

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_TR, Y, new_factor, new_BQ, average_income_model