def update(self, fit_minimizers, fit_minimizer_errors): try: x = fit_minimizers[self.fit_param_name] delta_x = fit_minimizer_errors[self.fit_param_name] except KeyError as e: if not self.has_warned: logger.warn( "Unknown reference to fit parameter '%s' in point of interest", str(e)) self.has_warned = True # TODO: Remove POI. return if np.isnan(delta_x) or delta_x == 0.0: # If the covariance extraction failed, just don't display the # confidence interval at all. delta_x = 0.0 label = str(x) else: label = uncertainty_to_string( x * self.x_data_to_display_scale, delta_x * self.x_data_to_display_scale) self.center_line.label.setFormat(label + self.x_unit_suffix) self.left_line.setPos(x - delta_x) self.center_line.setPos(x) self.right_line.setPos(x + delta_x)
def _redraw(self): x = self._position_source.get() if x is None: return if not self._added_to_plot: self._view_box.addItem(self._left_line, ignoreBounds=True) self._view_box.addItem(self._center_line, ignoreBounds=True) self._view_box.addItem(self._right_line, ignoreBounds=True) self._added_to_plot = True delta_x = None if self._uncertainty_source: delta_x = self._uncertainty_source.get() if delta_x is None or numpy.isnan(delta_x) or delta_x == 0.0: # If the covariance extraction failed, just don't display the # confidence interval at all. delta_x = 0.0 label = str(x * self._x_data_to_display_scale) else: label = uncertainty_to_string( x * self._x_data_to_display_scale, delta_x * self._x_data_to_display_scale) self._center_line.label.setFormat(label + self._x_unit_suffix) self._left_line.setPos(x - delta_x) self._center_line.setPos(x) self._right_line.setPos(x + delta_x)