예제 #1
0
  def slicell(self,varname,X,Y,time=0,plot=False,**opts):
    x,y,z,v,m=[[]]*5

    data      = opts.get('data',False)
    dist      = opts.get('dist',False)
    extrap    = opts.get('extrap',False)
    varOnly   = opts.get('retv',False)
    maskLimit = opts.get('lmask',0.5) # points where interpolated mask are above
                                      # this value are considered as mask!
                                      # Most strict value is 0


    X=np.array(X)
    Y=np.array(Y)
    if X.ndim>1: X=np.squeeze(X)
    if Y.ndim>1: Y=np.squeeze(X)

    if varname not in netcdf.varnames(self.name):
      print(':: variable %s not found' % varname)
      return x,y,z,v,m

    if time>=self.TIME:
      print('t = %d exceeds TIME dimension (%d)' % (time,self.TIME))
      return x,y,z,v,m

    if data is False: v=self.use(varname,SEARCHtime=time)
    else: v=data

    x,y,h,m=self.grid.vars(ruvp=self.var_at(varname))

    if v.ndim==3:
      V=calc.griddata(x,y,v,X,Y,extrap=extrap,mask2d=m==0, keepMaskVal=maskLimit)
    elif v.ndim==2:
      V=calc.griddata(x,y,np.ma.masked_where(m==0,v),X,Y,extrap=extrap, keepMaskVal=maskLimit)

    if varOnly: return V

    # Z:
    if v.ndim==3:
      Z=self.path_s_levels(time,X,Y,rw=varname[0])
    else: Z=0.*X


    # X, Y, dist:
    if dist:
      Dist=calc.distance(X,Y)
      if v.ndim==3:
        Dist=np.tile(Dist,(v.shape[0],1))
    else:
      if v.ndim==3:
        X=np.tile(X,(v.shape[0],1))
        Y=np.tile(Y,(v.shape[0],1))

    if dist:
      return Dist,Z,V
    else:
      return X,Y,Z,V
예제 #2
0
  def slicej(self,varname,ind,time=0,**opts):
    coords=opts.get('coords',self._default_coords('slicej')).split(',')

    out=vis.Data()
    out.label='slicej'
    out.msg=self.check_slice(varname,t=time,j=ind)
    if out.msg: return out

    v=self.use(varname,SEARCHtime=time,eta_SEARCH=ind)

    # add mask if not masked:
    if not np.ma.isMA(v):
###      m=self.grid.vars(ruvp=self.var_at(varname)[0],j=ind)[-1]
      m=self.grid.vars(ruvp=self.vloc(varname)[0],j=ind)[-1]
      if v.ndim==2: m=np.tile(m,(v.shape[0],1))
      v=np.ma.masked_where(m==0,v)

    out.v=v
    out.info['v']['name']=varname
    out.info['v']['slice']='j=%d'%ind
    try: out.info['v']['units']=netcdf.vatt(self.name,varname,'units')
    except: pass

    # coords:
    if 'z' in coords and v.ndim==2:
######      out.z=self.s_levels(time=time,ruvpw=self.var_at(varname),j=ind)
###      out.z=self.s_levels(time=time,loc=self.var_at(varname),j=ind)
      out.z=self.s_levels(time=time,loc=self.vloc(varname),j=ind)
      out.info['z']=dict(name='Depth',units='m')

    if any([i in coords for i in 'xyd']):
###      x,y,h,m=self.grid.vars(ruvp=self.var_at(varname)[0],j=ind)
      x,y,h,m=self.grid.vars(ruvp=self.vloc(varname)[0],j=ind)

    if 'd' in coords:
      d=calc.distance(x,y)
      if d[-1]-d[0]>1e4:
        d=d/1000.
        dunits='km'
      else: dunits='m'

      if v.ndim==2: d=np.tile(d,(v.shape[0],1))
      out.d=d
      out.info['d']=dict(name='Distance',units=dunits)

    if 'x' in coords:
      if v.ndim==2: x=np.tile(x,(v.shape[0],1))
      out.x=x
      out.info['x']=dict(name='Longitude',units=r'$\^o$E')

    if 'y' in coords:
      if v.ndim==2: y=np.tile(y,(v.shape[0],1))
      out.y=y
      out.info['y']=dict(name='Latitude',units=r'$\^o$N')

########    if 't' in coords and self.hast(varname): out.t=self.time[time]
    if 't' in coords and 't' in self.vaxes(varname): out.t=self.time[time]

    if v.ndim==2:
      out.extra=[vis.Data()]
      if 'd' in coords: out.extra[0].x=out.d[0]
      if 'x' in coords: out.extra[0].y=out.x[0]
      if 'y' in coords: out.extra[0].x=out.y[0]
      out.extra[0].v=-h
      out.extra[0].config['d1.plot']='fill_between'
      out.extra[0].config['d1.y0']=-h.max()-(h.max()-h.min())/20.
      out.extra[0].label='bottom'

    out.coordsReq=','.join(sorted(coords))
    return out
예제 #3
0
  def slicell(self,varname,X,Y,time=0,**opts):
    coords=opts.get('coords',self._default_coords('slicell')).split(',')

    data      = opts.get('data',False)
    extrap    = opts.get('extrap',False)
    maskLimit = opts.get('lmask',0.5) # points where interpolated mask are above
                                      # this value are considered as mask!
                                      # Most strict value is 0

    out=vis.Data()
    out.label='slicell'
    out.msg=self.check_slice(varname,t=time)
    if out.msg: return out#None,aux

    X=np.asarray(X)
    Y=np.asarray(Y)
    if X.ndim>1: X=np.squeeze(X)
    if Y.ndim>1: Y=np.squeeze(X)

###    x,y,h,m=self.grid.vars(ruvp=self.var_at(varname)[0])
    x,y,h,m=self.grid.vars(ruvp=self.vloc(varname)[0])
    if True: # extrat only portion of data needed:
      i0,i1,j0,j1=calc.ij_limits(x, y, (X.min(),X.max()),(Y.min(),Y.max()), margin=1)
      xi='%d:%d'%(i0,i1)
      eta='%d:%d'%(j0,j1)

      if data is False: V=self.use(varname,SEARCHtime=time,xi_SEARCH=xi,eta_SEARCH=eta)
      else: v=data[...,j0:j1,i0:i1]

      x=x[j0:j1,i0:i1]
      y=y[j0:j1,i0:i1]
      h=h[j0:j1,i0:i1]
      m=m[j0:j1,i0:i1]

    else:
      if data is False: V=self.use(varname,SEARCHtime=time)
      else: v=data

    if V.ndim==3:
      v=calc.griddata(x,y,V,X,Y,extrap=extrap,mask2d=m==0, keepMaskVal=maskLimit)
    elif V.ndim==2:
      v=calc.griddata(x,y,np.ma.masked_where(m==0,V),X,Y,extrap=extrap, keepMaskVal=maskLimit)

    out.v=v
    out.info['v']['name']=varname
    out.info['v']['slice']='path npts=%d'%X.size
    try: out.info['v']['units']=netcdf.vatt(self.nc,varname,'units')
    except: pass


    # coords:
    if 'z' in coords and V.ndim==3:
      inds=dict(xi=(i0,i1),eta=(j0,j1))
#########      out.z=self.path_s_levels(time,X,Y,rw=varname[0],inds=inds)
###      out.z=self.path_s_levels(time,X,Y,rw=self.var_at(varname)[1],inds=inds)
###
#######      out.z,zw=self.path_s_levels(time,X,Y,rw=False,inds=inds)
#######      if self.vloc(varname)[1]=='w': out.z=zw
      out.z=self.path_s_levels(time,X,Y,rw=self.vloc(varname)[1],inds=inds)
      out.info['z']=dict(name='Depth',units='m')

    if 'd' in coords:
      d=calc.distance(X,Y)
      if d[-1]-d[0]>1e4:
        d=d/1000.
        dunits='km'
      else: dunits='m'

      if v.ndim==2: d=np.tile(d,(v.shape[0],1))
      out.d=d
      out.info['d']=dict(name='Distance',units=dunits)

    if 'x' in coords:
      if v.ndim==2: X=np.tile(X,(v.shape[0],1))
      out.x=X
      out.info['x']=dict(name='Longitude',units=r'$\^o$E')

    if 'y' in coords:
      if v.ndim==2: Y=np.tile(Y,(v.shape[0],1))
      out.y=Y
      out.info['y']=dict(name='Latitude',units=r'$\^o$N')

#######    if 't' in coords and self.hast(varname): out.t=self.time[time]
    if 't' in coords and 't' in self.vaxes(varname): out.t=self.time[time]

    if v.ndim==2: ################3 and not out.z is None: # zeta and bottom already calculated
      out.extra=[vis.Data()]
      if 'd' in coords: out.extra[0].x=out.d[0]
      if 'x' in coords: out.extra[0].y=out.x[0]
      if 'y' in coords: out.extra[0].x=out.y[0]
####      #h=-zw[0]
      h    = calc.griddata(x,y,h,X,Y,extrap=False)
      out.extra[0].v=-h # bottom
      out.extra[0].config['d1.plot']='fill_between'
      out.extra[0].config['d1.y0']=-h.max()-(h.max()-h.min())/20.
      out.extra[0].label='bottom'



    out.coordsReq=','.join(sorted(coords))
    return out
예제 #4
0
    def slicei(self, varname, ind, time=0, dist=1, plot=False, **opts):
        savename = False
        if "savename" in opts.keys():
            savename = opts["savename"]

        d, x, y, z, v = [[]] * 5

        if varname not in netcdf.varnames(self.name):
            print ":: variable %s not found" % varname
            if dist:
                return d, z, v
            else:
                return x, y, z, v

        isU = varname == "u"
        isV = varname == "v"

        if isU:
            XI = self.XI_U
            xi = "XI_U"
        elif isV:
            if hasattr(self, "XI_V"):
                XI = self.XI_V
                xi = "XI_V"
            else:  # this happens in current roms-agrif
                XI = self.XI_RHO
                xi = "XI_RHO"
        else:
            XI = self.XI_RHO
            xi = "XI_RHO"

        if ind >= XI:
            print "j = %d exceeds %s dimension (%d)" % (ind, xi, XI)

        x, y, h, m = self.grid.vars(ruvp=self.var_at(varname), i=ind)
        karg = {"SEARCHtime": time, xi.lower(): ind}
        v = self.use(varname, **karg)
        if v.ndim == 2:
            z = self.s_levels(time=time, ruvpw=self.var_at(varname), i=ind)
        elif v.ndim == 1:
            z = []

        N = v.shape[0]
        if dist:
            d = calc.distance(x, y)
            if plot:

                pylab.figure()
                if v.ndim == 2:
                    pylab.pcolor(np.tile(d, (N, 1)), z, np.ma.masked_where(np.tile(m, (N, 1)) == 0, v), shading="flat")
                    pylab.plot(d, -h)
                    pylab.colorbar(shrink=0.7)
                elif v.ndim == 1:
                    pylab.plot(d, v)

                if savename:
                    pylab.savefig(savename, dpi=pylab.gcf().dpi)
                    pylab.close(pylab.gcf())

            if v.ndim == 2:
                return np.tile(d, (N, 1)), z, v  # ,np.tile(m,(N,1))==0
            elif v.ndim == 1:
                return d, z, v  # ,m==0

        else:
            if plot:
                pylab.figure()
                if v.ndim == 2:
                    pylab.pcolor(np.tile(y, (N, 1)), z, np.ma.masked_where(np.tile(m, (N, 1)) == 0, v), shading="flat")
                    pylab.colorbar(shrink=0.7)
                    pylab.plot(y, -h)
                elif v.ndim == 1:
                    pylab.plot(y, v)

                if savename:
                    pylab.savefig(savename, dpi=pylab.gcf().dpi)
                    pylab.close(pylab.gcf())

            if v.ndim == 2:
                return np.tile(x, (N, 1)), np.tile(y, (N, 1)), z, v  # ,np.tile(m,(N,1))==0
            elif v.ndim == 1:
                return x, y, z, v  # ,m==0
예제 #5
0
  def slicej(self,varname,ind,time=0,dist=1,plot=False,**opts):
    savename=False
    if 'savename' in opts.keys(): savename=opts['savename']

    d,x,y,z,v=[[]]*5

    if varname not in netcdf.varnames(self.name):
      print(':: variable %s not found' % varname)
      if dist: return  d,z,v
      else:  return  x,y,z,v

    isU=varname=='u'
    isV=varname=='v'

    if isU:
      if hasattr(self,'ETA_U'):
        ETA= self.ETA_U
        eta='ETA_U'
      else: # this happens in current roms-agrif
        ETA= self.ETA_RHO
        eta='ETA_RHO'
    elif isV:
      ETA= self.ETA_V
      eta='ETA_V'
    else:
      ETA= self.ETA_RHO
      eta='ETA_RHO'

    if ind >= ETA:
      print('j = %d exceeds %s dimension (%d)' % (ind,eta,ETA))
      if dist: return  d,z,v
      else:  return  x,y,z,v

    x,y,h,m=self.grid.vars(ruvp=self.var_at(varname),j=ind)
    karg={'SEARCHtime':time,eta.lower(): ind}
    v=self.use(varname,**karg)
    if v.ndim==2:
      z=self.s_levels(time=time,ruvpw=self.var_at(varname),j=ind)
    elif v.ndim==1:
      z=[]

    N=v.shape[0]
    if dist:
      d=calc.distance(x,y)
      if plot:
        pylab.figure()
        if v.ndim==2:
          pylab.pcolor(np.tile(d,(N,1)),z,np.ma.masked_where(np.tile(m,(N,1))==0,v),shading='flat')
          pylab.plot(d,-h)
          pylab.colorbar(shrink=.7)
        elif v.ndim==1:
          pylab.plot(d,v)

        if savename:
          pylab.savefig(savename,dpi=pylab.gcf().dpi)
          pylab.close(pylab.gcf())

      if v.ndim==2:
        return np.tile(d,(N,1)),z,v
      elif v.ndim==1:
         return d,z,v #np.ma.masked_where(m==0,v)

    else:
      if plot:
        pylab.figure()
        if v.ndim==2:
          pylab.pcolor(tile(x,(N,1)),z,ma.masked_where(tile(m,(N,1))==0,v),shading='flat')
          pylab.colorbar(shrink=.7)
          pylab.plot(x,-h)
        elif v.ndim==1:
          pylab.plot(x,v)

        if savename:
          pylab.savefig(savename,dpi=pylab.gcf().dpi)
          pylab.close(pylab.gcf())

      if v.ndim==2:
        m=np.tile(m,(N,1))==0
        return np.tile(x,(N,1)),np.tile(y,(N,1)),z,v #np.ma.masked_where(m,v)
      elif v.ndim==1:
         return x,y,z,v #np.ma.masked_where(m==0,v)
예제 #6
0
    def slicej(self, varname, ind, time=0, dist=1, plot=False, **opts):
        savename = False
        if 'savename' in opts.keys(): savename = opts['savename']

        d, x, y, z, v = [[]] * 5

        if varname not in netcdf.varnames(self.name):
            print(':: variable %s not found' % varname)
            if dist: return d, z, v
            else: return x, y, z, v

        isU = varname == 'u'
        isV = varname == 'v'

        if isU:
            if hasattr(self, 'ETA_U'):
                ETA = self.ETA_U
                eta = 'ETA_U'
            else:  # this happens in current roms-agrif
                ETA = self.ETA_RHO
                eta = 'ETA_RHO'
        elif isV:
            ETA = self.ETA_V
            eta = 'ETA_V'
        else:
            ETA = self.ETA_RHO
            eta = 'ETA_RHO'

        if ind >= ETA:
            print('j = %d exceeds %s dimension (%d)' % (ind, eta, ETA))
            if dist: return d, z, v
            else: return x, y, z, v

        x, y, h, m = self.grid.vars(ruvp=self.var_at(varname), j=ind)
        karg = {'SEARCHtime': time, eta.lower(): ind}
        v = self.use(varname, **karg)
        if v.ndim == 2:
            z = self.s_levels(time=time, ruvpw=self.var_at(varname), j=ind)
        elif v.ndim == 1:
            z = []

        N = v.shape[0]
        if dist:
            d = calc.distance(x, y)
            if plot:
                pylab.figure()
                if v.ndim == 2:
                    pylab.pcolor(np.tile(d, (N, 1)),
                                 z,
                                 np.ma.masked_where(
                                     np.tile(m, (N, 1)) == 0, v),
                                 shading='flat')
                    pylab.plot(d, -h)
                    pylab.colorbar(shrink=.7)
                elif v.ndim == 1:
                    pylab.plot(d, v)

                if savename:
                    pylab.savefig(savename, dpi=pylab.gcf().dpi)
                    pylab.close(pylab.gcf())

            if v.ndim == 2:
                return np.tile(d, (N, 1)), z, v
            elif v.ndim == 1:
                return d, z, v  #np.ma.masked_where(m==0,v)

        else:
            if plot:
                pylab.figure()
                if v.ndim == 2:
                    pylab.pcolor(tile(x, (N, 1)),
                                 z,
                                 ma.masked_where(tile(m, (N, 1)) == 0, v),
                                 shading='flat')
                    pylab.colorbar(shrink=.7)
                    pylab.plot(x, -h)
                elif v.ndim == 1:
                    pylab.plot(x, v)

                if savename:
                    pylab.savefig(savename, dpi=pylab.gcf().dpi)
                    pylab.close(pylab.gcf())

            if v.ndim == 2:
                m = np.tile(m, (N, 1)) == 0
                return np.tile(x, (N, 1)), np.tile(
                    y, (N, 1)), z, v  #np.ma.masked_where(m,v)
            elif v.ndim == 1:
                return x, y, z, v  #np.ma.masked_where(m==0,v)
예제 #7
0
    def slicell(self, varname, X, Y, time=0, plot=False, **opts):
        x, y, z, v, m = [[]] * 5

        data = opts.get('data', False)
        dist = opts.get('dist', False)
        extrap = opts.get('extrap', False)
        varOnly = opts.get('retv', False)
        maskLimit = opts.get('lmask',
                             0.5)  # points where interpolated mask are above
        # this value are considered as mask!
        # Most strict value is 0

        X = np.array(X)
        Y = np.array(Y)
        if X.ndim > 1: X = np.squeeze(X)
        if Y.ndim > 1: Y = np.squeeze(X)

        if varname not in netcdf.varnames(self.name):
            print(':: variable %s not found' % varname)
            return x, y, z, v, m

        if time >= self.TIME:
            print('t = %d exceeds TIME dimension (%d)' % (time, self.TIME))
            return x, y, z, v, m

        if data is False: v = self.use(varname, SEARCHtime=time)
        else: v = data

        x, y, h, m = self.grid.vars(ruvp=self.var_at(varname))

        if v.ndim == 3:
            V = calc.griddata(x,
                              y,
                              v,
                              X,
                              Y,
                              extrap=extrap,
                              mask2d=m == 0,
                              keepMaskVal=maskLimit)
        elif v.ndim == 2:
            V = calc.griddata(x,
                              y,
                              np.ma.masked_where(m == 0, v),
                              X,
                              Y,
                              extrap=extrap,
                              keepMaskVal=maskLimit)

        if varOnly: return V

        # Z:
        if v.ndim == 3:
            Z = self.path_s_levels(time, X, Y, rw=varname[0])
        else:
            Z = 0. * X

        # X, Y, dist:
        if dist:
            Dist = calc.distance(X, Y)
            if v.ndim == 3:
                Dist = np.tile(Dist, (v.shape[0], 1))
        else:
            if v.ndim == 3:
                X = np.tile(X, (v.shape[0], 1))
                Y = np.tile(Y, (v.shape[0], 1))

        if dist:
            return Dist, Z, V
        else:
            return X, Y, Z, V
예제 #8
0
파일: roms.py 프로젝트: bssrdf/okean
  def slicell(self,varname,X,Y,time=0,**opts):
    coords=opts.get('coords',self._default_coords('slicell')).split(',')

    data      = opts.get('data',False)
    extrap    = opts.get('extrap',False)
    maskLimit = opts.get('lmask',0.5) # points where interpolated mask are above
                                      # this value are considered as mask!
                                      # Most strict value is 0

    out=Data()
    out.msg=self.check_slice(varname,t=time)
    if out.msg: return out#None,aux

    X=np.asarray(X)
    Y=np.asarray(Y)
    if X.ndim>1: X=np.squeeze(X)
    if Y.ndim>1: Y=np.squeeze(X)

    x,y,h,m=self.grid.vars(ruvp=self.var_at(varname)[0])
    if True: # extrat only portion of data needed:
      i0,i1,j0,j1=calc.ij_limits(x, y, (X.min(),X.max()),(Y.min(),Y.max()), margin=1)
      xi='%d:%d'%(i0,i1)
      eta='%d:%d'%(j0,j1)

      if data is False: V=self.use(varname,SEARCHtime=time,xi_SEARCH=xi,eta_SEARCH=eta)
      else: v=data[...,j0:j1,i0:i1]

      x=x[j0:j1,i0:i1]
      y=y[j0:j1,i0:i1]
      #h=h[j0:j1,i0:i1] # not used
      m=m[j0:j1,i0:i1]

    else:
      if data is False: V=self.use(varname,SEARCHtime=time)
      else: v=data

    if V.ndim==3:
      v=calc.griddata(x,y,V,X,Y,extrap=extrap,mask2d=m==0, keepMaskVal=maskLimit)
    elif V.ndim==2:
      v=calc.griddata(x,y,np.ma.masked_where(m==0,V),X,Y,extrap=extrap, keepMaskVal=maskLimit)

    out.v=v
    out.info['v']['name']=varname
    out.info['v']['slice']='path npts=%d'%X.size
    try: out.info['v']['units']=netcdf.vatt(self.nc,varname,'units')
    except: pass


    # coords:
    if 'z' in coords and V.ndim==3:
      inds=dict(xi=(i0,i1),eta=(j0,j1))
#########      out.z=self.path_s_levels(time,X,Y,rw=varname[0],inds=inds)
      out.z=self.path_s_levels(time,X,Y,rw=self.var_at(varname)[1],inds=inds)

    if 'd' in coords:
      d=calc.distance(X,Y)
      if v.ndim==2: d=np.tile(d,(v.shape[0],1))
      out.d=d

    if 'x' in coords:
      if v.ndim==2: X=np.tile(X,(v.shape[0],1))
      out.x=X

    if 'y' in coords:
      if v.ndim==2: Y=np.tile(Y,(v.shape[0],1))
      out.y=Y

    if 't' in coords and self.hast(varname): out.t=self.time[time]

    out.coordsReq=','.join(sorted(coords))
    return out
예제 #9
0
파일: prognostic.py 프로젝트: jsh1012/okean
def data2roms(data,grd,sparams,**kargs):
  '''
  Interpolates data to roms 3D grid.

  The dict data must contain the prognostic variables temp, salt, u,
  v (3d) and ssh (zeta, 2d), as well as lon, lat (2d), depth (1d) and
  time/date info: date (data date), date0 (reference date) and time
  (difference between date and date0). The input data can be provided
  by load_data.

  Parameters
  ----------
  data : dict with prognostic variables
  grd : ROMS netcdf grid file
  sparams : s-coordinates parameters, theta_s,theta_b, hc and NLevels

  **kargs:
  ij : axis for vertical interpolations (*i,j)
  ij_ind : list of i or j index for vertical interpolation, all by
           default (ij_ind=False)
  horizAux : if True, the original data horizontally interpolated is
             returned and can be used for next data2roms call with
             this same karg
  quiet : output messages flag (false by default)
  '''

  ij='j'
  ij_ind=False
  horizAux=False
  quiet=False
  if 'ij'       in kargs.keys(): ij       = kargs['ij']
  if 'ij_ind'   in kargs.keys(): ij_ind   = kargs['ij_ind']
  if 'horizAux' in kargs.keys(): horizAux = kargs['horizAux']
  if 'quiet'    in kargs.keys(): quiet    = kargs['quiet']

  if not quiet: print 'using grid %s' % grd
  g=roms.Grid(grd)
  xr,yr,hr,mr=g.vars('r')
  xu,yu,hu,mu=g.vars('u')
  xv,yv,hv,mv=g.vars('v')
  ny,nx=hr.shape
  nz=sparams[3]

  NX=data['NX']
  NY=data['NY']
  NZ=data['NZ']

  if not quiet: print 'calc s levels...'
  sshr=calc.griddata(data['lon'],data['lat'],data['ssh'],xr,yr,extrap=True)

  Zr = g.s_levels(sparams,sshr,hr,'r')
  Zu = g.s_levels(sparams,sshr,hr,'u')
  Zv = g.s_levels(sparams,sshr,hr,'v')

  # interp horiz:
  retHorizAux=horizAux is True
  if horizAux in (True,False):
    TEMP = np.ma.masked_all((NZ,ny,nx),data['temp'].dtype)
    SALT = np.ma.masked_all((NZ,ny,nx),data['salt'].dtype)
    U    = np.ma.masked_all((NZ,ny,nx),data['u'].dtype)
    V    = np.ma.masked_all((NZ,ny,nx),data['v'].dtype)

    if not quiet: print 'horizontal interpolation:'
    for i in range(NZ):
      if not quiet and i%10==0: print '   lev %d of %d' % (i,NZ)
      #import pylab
      #pylab.figure()
      #pylab.pcolormesh(data['lon'],data['lat'],data['temp'][i,...])

      try: TEMP[i,...] = calc.griddata(data['lon'],data['lat'],data['temp'][i,...],xr,yr,extrap=True)
      except: pass

      try: SALT[i,...] = calc.griddata(data['lon'],data['lat'],data['salt'][i,...],xr,yr,extrap=True)
      except: pass

      try: U[i,...] = calc.griddata(data['lon'],data['lat'],data['u'][i,...],xr,yr,extrap=True)
      except: pass

      try: V[i,...] = calc.griddata(data['lon'],data['lat'],data['v'][i,...],xr,yr,extrap=True)
      except: pass

    # rotate U,V:
    if not quiet: print 'rotating U,V to grid angle'
    angle=g.use('angle')  # rad
    U,V=calc.rot2d(U,V,angle)
    U=rt.rho2uvp3d(U,'u')
    V=rt.rho2uvp3d(V,'v')

    horizAux={}
    horizAux['TEMP'] = TEMP
    horizAux['SALT'] = SALT
    horizAux['U']    = U
    horizAux['V']    = V

  else:
    TEMP = horizAux['TEMP']
    SALT = horizAux['SALT']
    U    = horizAux['U']
    V    = horizAux['V']

  # interp vert:
  nxu=nx-1
  nyv=ny-1
  #> -----------------------------------------------------------------
  useInd=not ij_ind is False
  if ij_ind is False:
    if   ij=='j': ij_ind=range(ny)
    elif ij=='i': ij_ind=range(nx)
  else:
    try: iter(ij_ind)
    except: ij_ind=[ij_ind]

    if   ij=='j': ny=nyv=len(ij_ind)
    elif ij=='i': nx=nxu=len(ij_ind)
  # -----------------------------------------------------------------<

  Temp = np.zeros((nz,ny ,nx ),data['temp'].dtype)
  Salt = np.zeros((nz,ny ,nx ),data['salt'].dtype)
  Uvel = np.zeros((nz,ny ,nxu),data['u'].dtype)
  Vvel = np.zeros((nz,nyv,nx ),data['v'].dtype)


  jslice=lambda x,ind: x[:,ind,:]
  islice=lambda x,ind: x[:,:,ind]

  ZZr = np.tile(data['depth'],(nx,ny,1)).T
  ZZu = np.tile(data['depth'],(nxu,ny,1)).T
  ZZv = np.tile(data['depth'],(nx,nyv,1)).T

  if not useInd is False: #>------------------------------------------
    if   ij=='j':
      slice=jslice
      sshr=sshr[ij_ind,:]
      hr  =hr[ij_ind,:]
    elif ij=='i':
      slice=islice
      sshr=sshr[:,ij_ind]
      hr  =hr[:,ij_ind]

    Zr,Zu,Zv,TEMP,SALT,U,V=[slice(k,ij_ind) for k in [Zr,Zu,Zv,TEMP,SALT,U,V]]
  # -----------------------------------------------------------------<

  if useInd: # then store distances for a possible bry file
    dtype=Temp.dtype
    distr=np.zeros((nz,ny, nx ),dtype)
    distu=np.zeros((nz,ny, nxu),dtype)
    distv=np.zeros((nz,nyv,nx ),dtype)

  if not quiet: print 'vertical interpolation:'
  if ij=='j':
    for j in range(ny):
      if not quiet and (ny<10 or (ny>=10 and j%10==0)): print '  j=%3d of %3d' % (j,ny)
      ind=ij_ind[j]
      dr=np.tile(calc.distance(xr[ind,:],yr[ind,:]),(nz,1))
      du=np.tile(calc.distance(xu[ind,:],yu[ind,:]),(nz,1))
      Dr=np.tile(calc.distance(xr[ind,:],yr[ind,:]),(NZ,1))
      Du=np.tile(calc.distance(xu[ind,:],yu[ind,:]),(NZ,1))

      if useInd:
        distr[:,j,:]=dr;
        distu[:,j,:]=du;

      Temp[:,j,:]   = calc.griddata(Dr,ZZr[:,j,:],TEMP[:,j,:],dr,Zr[:,j,:],extrap=True)
      Salt[:,j,:]   = calc.griddata(Dr,ZZr[:,j,:],SALT[:,j,:],dr,Zr[:,j,:],extrap=True)
      if 0 and j%10==0:
        print Dr.shape, ZZr[:,j,:].shape
        import pylab as pl
        pl.figure(1)
        pl.clf()
        pl.pcolormesh(Dr,ZZr[:,j,:],SALT[:,j,:])
        pl.colorbar()
        clim=pl.gci().get_clim()
      
        pl.figure(2)
        pl.clf()
        pl.pcolormesh(dr,Zr[:,j,:],Salt[:,j,:])
        pl.clim(clim)
        pl.colorbar()
        raw_input()
      
      Uvel[:,j,:]   = calc.griddata(Du,ZZu[:,j,:],U[:,j,:],   du,Zu[:,j,:],extrap=True)
      if j<Vvel.shape[1]:
        dv=np.tile(calc.distance(xv[ind,:],yv[ind,:]),(nz,1))
        Dv=np.tile(calc.distance(xv[ind,:],yv[ind,:]),(NZ,1))
        Vvel[:,j,:] = calc.griddata(Dv,ZZv[:,j,:],V[:,j,:],   dv,Zv[:,j,:],extrap=True)
        if useInd:
          distv[:,j,:]=dv

      if np.any(np.isnan(Temp[:,j,:])): print 'found nan in temp',j
      if np.any(np.isnan(Salt[:,j,:])): print 'found nan in salt',j
      if np.any(np.isnan(Uvel[:,j,:])): print 'found nan in u',j
      if j<Vvel.shape[1] and np.any(np.isnan(Vvel[:,j,:])): print 'found nan in v',j


  elif ij=='i':
    for i in range(nx):
      if not quiet and (nx<10 or (nx>=10 and i%10==0)): print '  i=%3d of %3d' % (i,nx)
      ind=ij_ind[i]
      dr=np.tile(calc.distance(xr[:,ind],yr[:,ind]),(nz,1))
      dv=np.tile(calc.distance(xv[:,ind],yv[:,ind]),(nz,1))
      Dr=np.tile(calc.distance(xr[:,ind],yr[:,ind]),(NZ,1))
      Dv=np.tile(calc.distance(xv[:,ind],yv[:,ind]),(NZ,1))

      if useInd:
        distr[:,:,i]=dr;
        distv[:,:,i]=dv;

      Temp[:,:,i]   = calc.griddata(Dr,ZZr[:,:,i],TEMP[:,:,i],dr,Zr[:,:,i],extrap=True)
      Salt[:,:,i]   = calc.griddata(Dr,ZZr[:,:,i],SALT[:,:,i],dr,Zr[:,:,i],extrap=True)
      Vvel[:,:,i]   = calc.griddata(Dv,ZZv[:,:,i],V[:,:,i],   dv,Zv[:,:,i],extrap=True)
      if i<Uvel.shape[2]:
        du=np.tile(calc.distance(xu[:,ind],yu[:,ind]),(nz,1))
        Du=np.tile(calc.distance(xu[:,ind],yu[:,ind]),(NZ,1))
        Uvel[:,:,i] = calc.griddata(Du,ZZu[:,:,i],U[:,:,i],   du,Zu[:,:,i],extrap=True)
        if useInd:
          distu[:,:,i]=du


  # uv bar:
  if not quiet: print 'calc uvbar'
  if useInd is False:
    ubar,vbar=rt.uvbar(Uvel,Vvel,sshr,hr,sparams)
  else: #>------------------------------------------------------------
    sshu=calc.griddata(data['lon'],data['lat'],data['ssh'],xu,yu,extrap=True)
    sshv=calc.griddata(data['lon'],data['lat'],data['ssh'],xv,yv,extrap=True)

    if ij=='j':
      sshu=sshu[ij_ind,:]
      sshv=sshv[ij_ind,:]
      hu  =hu[ij_ind,:]
      hv  =hv[ij_ind,:]
    elif ij=='i':
      sshu=sshu[:,ij_ind]
      sshv=sshv[:,ij_ind]
      hu  =hu[:,ij_ind]
      hv  =hv[:,ij_ind]

    ubar=rt.barotropic(Uvel,sshu,hu,sparams)
    vbar=rt.barotropic(Vvel,sshv,hv,sparams)
  # -----------------------------------------------------------------<


  Vars=cb.odict()
  Vars['temp'] = Temp
  Vars['salt'] = Salt
  Vars['u']    = Uvel
  Vars['v']    = Vvel
  Vars['zeta'] = sshr
  Vars['ubar'] = ubar
  Vars['vbar'] = vbar

  Vars['date']   = data['date']

  if not useInd is False: #>------------------------------------------
    Vars['depth']  = Zr
    Vars['depthu'] = Zu
    Vars['depthv'] = Zv

    Vars['dist']  = distr
    Vars['distu'] = distu
    Vars['distv'] = distv
  # -----------------------------------------------------------------<


  if retHorizAux: return Vars, horizAux
  else: return Vars
예제 #10
0
def data2roms(data, grd, sparams, **kargs):
    '''
  Interpolates data to roms 3D grid.

  The dict data must contain the prognostic variables temp, salt, u,
  v (3d) and ssh (zeta, 2d), as well as lon, lat (2d), depth (1d) and
  time/date info: date (data date), date0 (reference date) and time
  (difference between date and date0). The input data can be provided
  by load_data.

  Parameters
  ----------
  data : dict with prognostic variables
  grd : ROMS netcdf grid file
  sparams : s-coordinates parameters, theta_s,theta_b, hc and NLevels

  **kargs:
  ij : axis for vertical interpolations (*i,j)
  ij_ind : list of i or j index for vertical interpolation, all by
           default (ij_ind=False)
  horizAux : if True, the original data horizontally interpolated is
             returned and can be used for next data2roms call with
             this same karg
  quiet : output messages flag (false by default)
  '''

    ij = 'j'
    ij_ind = False
    horizAux = False
    quiet = False
    if 'ij' in kargs.keys(): ij = kargs['ij']
    if 'ij_ind' in kargs.keys(): ij_ind = kargs['ij_ind']
    if 'horizAux' in kargs.keys(): horizAux = kargs['horizAux']
    if 'quiet' in kargs.keys(): quiet = kargs['quiet']

    if not quiet: print 'using grid %s' % grd
    g = roms.Grid(grd)
    xr, yr, hr, mr = g.vars('r')
    xu, yu, hu, mu = g.vars('u')
    xv, yv, hv, mv = g.vars('v')
    ny, nx = hr.shape
    nz = sparams[3]

    NX = data['NX']
    NY = data['NY']
    NZ = data['NZ']

    if not quiet: print 'calc s levels...'
    sshr = calc.griddata(data['lon'],
                         data['lat'],
                         data['ssh'],
                         xr,
                         yr,
                         extrap=True)

    Zr = g.s_levels(sparams, sshr, hr, 'r')
    Zu = g.s_levels(sparams, sshr, hr, 'u')
    Zv = g.s_levels(sparams, sshr, hr, 'v')

    # interp horiz:
    retHorizAux = horizAux is True
    if horizAux in (True, False):
        TEMP = np.ma.masked_all((NZ, ny, nx), data['temp'].dtype)
        SALT = np.ma.masked_all((NZ, ny, nx), data['salt'].dtype)
        U = np.ma.masked_all((NZ, ny, nx), data['u'].dtype)
        V = np.ma.masked_all((NZ, ny, nx), data['v'].dtype)

        if not quiet: print 'horizontal interpolation:'
        for i in range(NZ):
            if not quiet and i % 10 == 0: print '   lev %d of %d' % (i, NZ)
            #import pylab
            #pylab.figure()
            #pylab.pcolormesh(data['lon'],data['lat'],data['temp'][i,...])

            try:
                TEMP[i, ...] = calc.griddata(data['lon'],
                                             data['lat'],
                                             data['temp'][i, ...],
                                             xr,
                                             yr,
                                             extrap=True)
            except:
                pass

            try:
                SALT[i, ...] = calc.griddata(data['lon'],
                                             data['lat'],
                                             data['salt'][i, ...],
                                             xr,
                                             yr,
                                             extrap=True)
            except:
                pass

            try:
                U[i, ...] = calc.griddata(data['lon'],
                                          data['lat'],
                                          data['u'][i, ...],
                                          xr,
                                          yr,
                                          extrap=True)
            except:
                pass

            try:
                V[i, ...] = calc.griddata(data['lon'],
                                          data['lat'],
                                          data['v'][i, ...],
                                          xr,
                                          yr,
                                          extrap=True)
            except:
                pass

        # rotate U,V:
        if not quiet: print 'rotating U,V to grid angle'
        angle = g.use('angle')  # rad
        U, V = calc.rot2d(U, V, angle)
        U = rt.rho2uvp3d(U, 'u')
        V = rt.rho2uvp3d(V, 'v')

        horizAux = {}
        horizAux['TEMP'] = TEMP
        horizAux['SALT'] = SALT
        horizAux['U'] = U
        horizAux['V'] = V

    else:
        TEMP = horizAux['TEMP']
        SALT = horizAux['SALT']
        U = horizAux['U']
        V = horizAux['V']

    # interp vert:
    nxu = nx - 1
    nyv = ny - 1
    #> -----------------------------------------------------------------
    useInd = not ij_ind is False
    if ij_ind is False:
        if ij == 'j': ij_ind = range(ny)
        elif ij == 'i': ij_ind = range(nx)
    else:
        try:
            iter(ij_ind)
        except:
            ij_ind = [ij_ind]

        if ij == 'j': ny = nyv = len(ij_ind)
        elif ij == 'i': nx = nxu = len(ij_ind)
    # -----------------------------------------------------------------<

    Temp = np.zeros((nz, ny, nx), data['temp'].dtype)
    Salt = np.zeros((nz, ny, nx), data['salt'].dtype)
    Uvel = np.zeros((nz, ny, nxu), data['u'].dtype)
    Vvel = np.zeros((nz, nyv, nx), data['v'].dtype)

    jslice = lambda x, ind: x[:, ind, :]
    islice = lambda x, ind: x[:, :, ind]

    ZZr = np.tile(data['depth'], (nx, ny, 1)).T
    ZZu = np.tile(data['depth'], (nxu, ny, 1)).T
    ZZv = np.tile(data['depth'], (nx, nyv, 1)).T

    if not useInd is False:  #>------------------------------------------
        if ij == 'j':
            slice = jslice
            sshr = sshr[ij_ind, :]
            hr = hr[ij_ind, :]
        elif ij == 'i':
            slice = islice
            sshr = sshr[:, ij_ind]
            hr = hr[:, ij_ind]

        Zr, Zu, Zv, TEMP, SALT, U, V = [
            slice(k, ij_ind) for k in [Zr, Zu, Zv, TEMP, SALT, U, V]
        ]
    # -----------------------------------------------------------------<

    if useInd:  # then store distances for a possible bry file
        dtype = Temp.dtype
        distr = np.zeros((nz, ny, nx), dtype)
        distu = np.zeros((nz, ny, nxu), dtype)
        distv = np.zeros((nz, nyv, nx), dtype)

    if not quiet: print 'vertical interpolation:'
    if ij == 'j':
        for j in range(ny):
            if not quiet and (ny < 10 or (ny >= 10 and j % 10 == 0)):
                print '  j=%3d of %3d' % (j, ny)
            ind = ij_ind[j]
            dr = np.tile(calc.distance(xr[ind, :], yr[ind, :]), (nz, 1))
            du = np.tile(calc.distance(xu[ind, :], yu[ind, :]), (nz, 1))
            Dr = np.tile(calc.distance(xr[ind, :], yr[ind, :]), (NZ, 1))
            Du = np.tile(calc.distance(xu[ind, :], yu[ind, :]), (NZ, 1))

            if useInd:
                distr[:, j, :] = dr
                distu[:, j, :] = du

            Temp[:, j, :] = calc.griddata(Dr,
                                          ZZr[:, j, :],
                                          TEMP[:, j, :],
                                          dr,
                                          Zr[:, j, :],
                                          extrap=True)
            Salt[:, j, :] = calc.griddata(Dr,
                                          ZZr[:, j, :],
                                          SALT[:, j, :],
                                          dr,
                                          Zr[:, j, :],
                                          extrap=True)
            if 0 and j % 10 == 0:
                print Dr.shape, ZZr[:, j, :].shape
                import pylab as pl
                pl.figure(1)
                pl.clf()
                pl.pcolormesh(Dr, ZZr[:, j, :], SALT[:, j, :])
                pl.colorbar()
                clim = pl.gci().get_clim()

                pl.figure(2)
                pl.clf()
                pl.pcolormesh(dr, Zr[:, j, :], Salt[:, j, :])
                pl.clim(clim)
                pl.colorbar()
                raw_input()

            Uvel[:, j, :] = calc.griddata(Du,
                                          ZZu[:, j, :],
                                          U[:, j, :],
                                          du,
                                          Zu[:, j, :],
                                          extrap=True)
            if j < Vvel.shape[1]:
                dv = np.tile(calc.distance(xv[ind, :], yv[ind, :]), (nz, 1))
                Dv = np.tile(calc.distance(xv[ind, :], yv[ind, :]), (NZ, 1))
                Vvel[:, j, :] = calc.griddata(Dv,
                                              ZZv[:, j, :],
                                              V[:, j, :],
                                              dv,
                                              Zv[:, j, :],
                                              extrap=True)
                if useInd:
                    distv[:, j, :] = dv

            if np.any(np.isnan(Temp[:, j, :])): print 'found nan in temp', j
            if np.any(np.isnan(Salt[:, j, :])): print 'found nan in salt', j
            if np.any(np.isnan(Uvel[:, j, :])): print 'found nan in u', j
            if j < Vvel.shape[1] and np.any(np.isnan(Vvel[:, j, :])):
                print 'found nan in v', j

    elif ij == 'i':
        for i in range(nx):
            if not quiet and (nx < 10 or (nx >= 10 and i % 10 == 0)):
                print '  i=%3d of %3d' % (i, nx)
            ind = ij_ind[i]
            dr = np.tile(calc.distance(xr[:, ind], yr[:, ind]), (nz, 1))
            dv = np.tile(calc.distance(xv[:, ind], yv[:, ind]), (nz, 1))
            Dr = np.tile(calc.distance(xr[:, ind], yr[:, ind]), (NZ, 1))
            Dv = np.tile(calc.distance(xv[:, ind], yv[:, ind]), (NZ, 1))

            if useInd:
                distr[:, :, i] = dr
                distv[:, :, i] = dv

            Temp[:, :, i] = calc.griddata(Dr,
                                          ZZr[:, :, i],
                                          TEMP[:, :, i],
                                          dr,
                                          Zr[:, :, i],
                                          extrap=True)
            Salt[:, :, i] = calc.griddata(Dr,
                                          ZZr[:, :, i],
                                          SALT[:, :, i],
                                          dr,
                                          Zr[:, :, i],
                                          extrap=True)
            Vvel[:, :, i] = calc.griddata(Dv,
                                          ZZv[:, :, i],
                                          V[:, :, i],
                                          dv,
                                          Zv[:, :, i],
                                          extrap=True)
            if i < Uvel.shape[2]:
                du = np.tile(calc.distance(xu[:, ind], yu[:, ind]), (nz, 1))
                Du = np.tile(calc.distance(xu[:, ind], yu[:, ind]), (NZ, 1))
                Uvel[:, :, i] = calc.griddata(Du,
                                              ZZu[:, :, i],
                                              U[:, :, i],
                                              du,
                                              Zu[:, :, i],
                                              extrap=True)
                if useInd:
                    distu[:, :, i] = du

    # uv bar:
    if not quiet: print 'calc uvbar'
    if useInd is False:
        ubar, vbar = rt.uvbar(Uvel, Vvel, sshr, hr, sparams)
    else:  #>------------------------------------------------------------
        sshu = calc.griddata(data['lon'],
                             data['lat'],
                             data['ssh'],
                             xu,
                             yu,
                             extrap=True)
        sshv = calc.griddata(data['lon'],
                             data['lat'],
                             data['ssh'],
                             xv,
                             yv,
                             extrap=True)

        if ij == 'j':
            sshu = sshu[ij_ind, :]
            sshv = sshv[ij_ind, :]
            hu = hu[ij_ind, :]
            hv = hv[ij_ind, :]
        elif ij == 'i':
            sshu = sshu[:, ij_ind]
            sshv = sshv[:, ij_ind]
            hu = hu[:, ij_ind]
            hv = hv[:, ij_ind]

        ubar = rt.barotropic(Uvel, sshu, hu, sparams)
        vbar = rt.barotropic(Vvel, sshv, hv, sparams)
    # -----------------------------------------------------------------<

    Vars = cb.odict()
    Vars['temp'] = Temp
    Vars['salt'] = Salt
    Vars['u'] = Uvel
    Vars['v'] = Vvel
    Vars['zeta'] = sshr
    Vars['ubar'] = ubar
    Vars['vbar'] = vbar

    Vars['date'] = data['date']

    if not useInd is False:  #>------------------------------------------
        Vars['depth'] = Zr
        Vars['depthu'] = Zu
        Vars['depthv'] = Zv

        Vars['dist'] = distr
        Vars['distu'] = distu
        Vars['distv'] = distv
    # -----------------------------------------------------------------<

    if retHorizAux: return Vars, horizAux
    else: return Vars
예제 #11
0
파일: roms.py 프로젝트: AndreLobato/okean
  def slicell(self,varname,X,Y,time=0,**opts):
#    x,y,z,v,m=[[]]*5
########    plot= opts.get('plot',False)
#########    ax  = opts.get('ax',None)
    coords=opts.get('coords',self._default_coords('slicell')).split(',')

    data      = opts.get('data',False)
#    dist      = opts.get('dist',False)
    extrap    = opts.get('extrap',False)
#    varOnly   = opts.get('retv',False)
    maskLimit = opts.get('lmask',0.5) # points where interpolated mask are above
                                      # this value are considered as mask!
                                      # Most strict value is 0

    out=Data()
    out.msg=self.check_slice(varname,t=time)
    if out.msg: return out#None,aux

    X=np.asarray(X)
    Y=np.asarray(Y)
    if X.ndim>1: X=np.squeeze(X)
    if Y.ndim>1: Y=np.squeeze(X)

#    if varname not in netcdf.varnames(self.name):
#      print ':: variable %s not found' % varname
#      return x,y,z,v,m
#
#    if time>=self.TIME:
#      print 't = %d exceeds TIME dimension (%d)' % (time,self.TIME)
#      return x,y,z,v,m

    x,y,h,m=self.grid.vars(ruvp=self.var_at(varname))
    if True: # extrat only portion of data needed:
##      print 'start', x.shape,y.shape,X.shape
      i0,i1,j0,j1=calc.ij_limits(x, y, (X.min(),X.max()),(Y.min(),Y.max()), margin=1)
##      print 'end'
      xi='%d:%d'%(i0,i1)
      eta='%d:%d'%(j0,j1)

      if data is False: V=self.use(varname,SEARCHtime=time,xi_SEARCH=xi,eta_SEARCH=eta)
      else: v=data[...,j0:j1,i0:i1]

      x=x[j0:j1,i0:i1]
      y=y[j0:j1,i0:i1]
      h=h[j0:j1,i0:i1]
      m=m[j0:j1,i0:i1]

    else:
      if data is False: V=self.use(varname,SEARCHtime=time)
      else: v=data


    if V.ndim==3:
      v=calc.griddata(x,y,V,X,Y,extrap=extrap,mask2d=m==0, keepMaskVal=maskLimit)
    elif V.ndim==2:
      v=calc.griddata(x,y,np.ma.masked_where(m==0,V),X,Y,extrap=extrap, keepMaskVal=maskLimit)

    # coords:
    if 'z' in coords and V.ndim==3:
      out.z=self.path_s_levels(time,X,Y,rw=varname[0])

    if 'd' in coords:
      d=calc.distance(X,Y)
      if v.ndim==2: d=np.tile(d,(v.shape[0],1))
      out.d=d

    if 'x' in coords:
      if v.ndim==2: X=np.tile(X,(v.shape[0],1))
      out.x=X

    if 'y' in coords:
      if v.ndim==2: Y=np.tile(Y,(v.shape[0],1))
      out.y=Y

    if 't' in coords: out.t=self.time[time]

#    # X, Y, dist:
#    if dist:
#      Dist=calc.distance(X,Y)
#      if v.ndim==3:
#        Dist=np.tile(Dist,(v.shape[0],1))
#    else:
#      if v.ndim==3:
#        X=np.tile(X,(v.shape[0],1))
#        Y=np.tile(Y,(v.shape[0],1))
#
#    if dist:
#      return Dist,Z,V
#    else:
#      return X,Y,Z,V
#
#    if plot:
#      if not ax: ax=pl.gca()
#      if v.ndim==2:
#        if 'x' in coords:
#          p=ax.pcolormesh(out.x,out.z,v)
###          ax.plot(aux.x[0],-h)
#        elif 'y' in coords:
#          p=ax.pcolormesh(out.y,out.z,v)
###          ax.plot(aux.y[0],-h)
#        else:
#          p=ax.pcolormesh(out.d,out.z,v)
####          ax.plot(aux.d[0],-h)
##
#        pl.colorbar(p,shrink=.7)
##      elif  v.ndim==1:
#        if 'x' in coords:
#          ax.plot(out.x,v)
#        elif 'y' in coords:
#          ax.plot(out.y,v)
#        else:
#          ax.plot(out.d,v)
#
    out.v=v
    out.coordsReq=','.join(sorted(coords))
    return out###v,aux
예제 #12
0
파일: roms.py 프로젝트: AndreLobato/okean
  def slicej(self,varname,ind,time=0,**opts):
    coords=opts.get('coords',self._default_coords('slicej')).split(',')

    out=Data()
    out.msg=self.check_slice(varname,t=time,j=ind)
    if out.msg: return out

    v=self.use(varname,SEARCHtime=time,eta_SEARCH=ind)

    # add mask if not masked:
    if not np.ma.isMA(v):
      m=self.grid.vars(ruvp=self.var_at(varname),j=ind)[-1]
      if v.ndim==2: m=np.tile(m,(v.shape[0],1))
      v=np.ma.masked_where(m==0,v)

    out.v=v
    out.info['v']['name']=varname
    out.info['v']['slice']='j=%d'%ind
    try: out.info['v']['units']=netcdf.vatt(self.name,varname,'units')
    except: pass

    # coords:
    if 'z' in coords and v.ndim==2:
      out.z=self.s_levels(time=time,ruvpw=self.var_at(varname),j=ind)
      out.info['z']=dict(name='Depth',units='m')

    if any([i in coords for i in 'xyd']):
      x,y,h,m=self.grid.vars(ruvp=self.var_at(varname),j=ind)

    if 'd' in coords:
      d=calc.distance(x,y)
      if d[-1]-d[0]>1e4:
        d=d/1000.
        dunits='km'
      else: dunits='m'

      if v.ndim==2: d=np.tile(d,(v.shape[0],1))
      out.d=d
      out.info['d']=dict(name='Distance',units=dunits)

    if 'x' in coords:
      if v.ndim==2: x=np.tile(x,(v.shape[0],1))
      out.x=x
      out.info['x']=dict(name='Longitude',units=r'$\^o$E')

    if 'y' in coords:
      if v.ndim==2: y=np.tile(y,(v.shape[0],1))
      out.y=y
      out.info['y']=dict(name='Latitude',units=r'$\^o$N')

    if 't' in coords: out.t=self.time[time]

    if v.ndim==2:
      out.extra=[Data()]
      if 'd' in coords: out.extra[0].x=out.d[0]
      if 'x' in coords: out.extra[0].y=out.x[0]
      if 'y' in coords: out.extra[0].x=out.y[0]
      out.extra[0].v=-h
      out.extra[0].config['1d.plot']='fill_between'
      out.extra[0].config['1d.y0']=-h.max()-(h.max()-h.min())/20.
      out.extra[0].alias='bottom'

    out.coordsReq=','.join(sorted(coords))
    return out
예제 #13
0
파일: roms.py 프로젝트: martalmeida/okean
  def slicell(self,varname,X,Y,time=0,**opts):
    coords=opts.get('coords',self._default_coords('slicell')).split(',')

    data      = opts.get('data',False)
    extrap    = opts.get('extrap',False)
    maskLimit = opts.get('lmask',0.5) # points where interpolated mask are above
                                      # this value are considered as mask!
                                      # Most strict value is 0

    out=vis.Data()
    out.label='slicell'
    out.msg=self.check_slice(varname,t=time)
    if out.msg: return out#None,aux

    X=np.asarray(X)
    Y=np.asarray(Y)
    if X.ndim>1: X=np.squeeze(X)
    if Y.ndim>1: Y=np.squeeze(X)

###    x,y,h,m=self.grid.vars(ruvp=self.var_at(varname)[0])
    x,y,h,m=self.grid.vars(ruvp=self.vloc(varname)[0])
    if True: # extrat only portion of data needed:
      i0,i1,j0,j1=calc.ij_limits(x, y, (X.min(),X.max()),(Y.min(),Y.max()), margin=1)
      xi='%d:%d'%(i0,i1)
      eta='%d:%d'%(j0,j1)

      if data is False: V=self.use(varname,SEARCHtime=time,xi_SEARCH=xi,eta_SEARCH=eta)
      else: v=data[...,j0:j1,i0:i1]

      x=x[j0:j1,i0:i1]
      y=y[j0:j1,i0:i1]
      h=h[j0:j1,i0:i1]
      m=m[j0:j1,i0:i1]

    else:
      if data is False: V=self.use(varname,SEARCHtime=time)
      else: v=data

    if V.ndim==3:
      v=calc.griddata(x,y,V,X,Y,extrap=extrap,mask2d=m==0, keepMaskVal=maskLimit)
    elif V.ndim==2:
      v=calc.griddata(x,y,np.ma.masked_where(m==0,V),X,Y,extrap=extrap, keepMaskVal=maskLimit)

    out.v=v
    out.info['v']['name']=varname
    out.info['v']['slice']='path npts=%d'%X.size
    try: out.info['v']['units']=netcdf.vatt(self.nc,varname,'units')
    except: pass


    # coords:
    if 'z' in coords and V.ndim==3:
      inds=dict(xi=(i0,i1),eta=(j0,j1))
#########      out.z=self.path_s_levels(time,X,Y,rw=varname[0],inds=inds)
###      out.z=self.path_s_levels(time,X,Y,rw=self.var_at(varname)[1],inds=inds)
###
#######      out.z,zw=self.path_s_levels(time,X,Y,rw=False,inds=inds)
#######      if self.vloc(varname)[1]=='w': out.z=zw
      out.z=self.path_s_levels(time,X,Y,rw=self.vloc(varname)[1],inds=inds)
      out.info['z']=dict(name='Depth',units='m')

    if 'd' in coords:
      d=calc.distance(X,Y)
      if d[-1]-d[0]>1e4:
        d=d/1000.
        dunits='km'
      else: dunits='m'

      if v.ndim==2: d=np.tile(d,(v.shape[0],1))
      out.d=d
      out.info['d']=dict(name='Distance',units=dunits)

    if 'x' in coords:
      if v.ndim==2: X=np.tile(X,(v.shape[0],1))
      out.x=X
      out.info['x']=dict(name='Longitude',units=r'$\^o$E')

    if 'y' in coords:
      if v.ndim==2: Y=np.tile(Y,(v.shape[0],1))
      out.y=Y
      out.info['y']=dict(name='Latitude',units=r'$\^o$N')

#######    if 't' in coords and self.hast(varname): out.t=self.time[time]
    if 't' in coords and 't' in self.vaxes(varname): out.t=self.time[time]

    if v.ndim==2: ################3 and not out.z is None: # zeta and bottom already calculated
      out.extra=[vis.Data()]
      if 'd' in coords: out.extra[0].x=out.d[0]
      if 'x' in coords: out.extra[0].y=out.x[0]
      if 'y' in coords: out.extra[0].x=out.y[0]
####      #h=-zw[0]
      h    = calc.griddata(x,y,h,X,Y,extrap=False)
      out.extra[0].v=-h # bottom
      out.extra[0].config['d1.plot']='fill_between'
      out.extra[0].config['d1.y0']=-h.max()-(h.max()-h.min())/20.
      out.extra[0].label='bottom'



    out.coordsReq=','.join(sorted(coords))
    return out
예제 #14
0
파일: roms.py 프로젝트: moghimis/okean
  def slicell(self,varname,X,Y,time=0,**opts):
    coords=opts.get('coords',self._default_coords('slicell')).split(',')

    data      = opts.get('data',False)
    extrap    = opts.get('extrap',False)
    maskLimit = opts.get('lmask',0.5) # points where interpolated mask are above
                                      # this value are considered as mask!
                                      # Most strict value is 0

    out=Data()
    out.msg=self.check_slice(varname,t=time)
    if out.msg: return out#None,aux

    X=np.asarray(X)
    Y=np.asarray(Y)
    if X.ndim>1: X=np.squeeze(X)
    if Y.ndim>1: Y=np.squeeze(X)

    x,y,h,m=self.grid.vars(ruvp=self.var_at(varname)[0])
    if True: # extrat only portion of data needed:
      i0,i1,j0,j1=calc.ij_limits(x, y, (X.min(),X.max()),(Y.min(),Y.max()), margin=1)
      xi='%d:%d'%(i0,i1)
      eta='%d:%d'%(j0,j1)

      if data is False: V=self.use(varname,SEARCHtime=time,xi_SEARCH=xi,eta_SEARCH=eta)
      else: v=data[...,j0:j1,i0:i1]

      x=x[j0:j1,i0:i1]
      y=y[j0:j1,i0:i1]
      #h=h[j0:j1,i0:i1] # not used
      m=m[j0:j1,i0:i1]

    else:
      if data is False: V=self.use(varname,SEARCHtime=time)
      else: v=data

    if V.ndim==3:
      v=calc.griddata(x,y,V,X,Y,extrap=extrap,mask2d=m==0, keepMaskVal=maskLimit)
    elif V.ndim==2:
      v=calc.griddata(x,y,np.ma.masked_where(m==0,V),X,Y,extrap=extrap, keepMaskVal=maskLimit)

    out.v=v
    out.info['v']['name']=varname
    out.info['v']['slice']='path npts=%d'%X.size
    try: out.info['v']['units']=netcdf.vatt(self.nc,varname,'units')
    except: pass


    # coords:
    if 'z' in coords and V.ndim==3:
      inds=dict(xi=(i0,i1),eta=(j0,j1))
#########      out.z=self.path_s_levels(time,X,Y,rw=varname[0],inds=inds)
      out.z=self.path_s_levels(time,X,Y,rw=self.var_at(varname)[1],inds=inds)

    if 'd' in coords:
      d=calc.distance(X,Y)
      if v.ndim==2: d=np.tile(d,(v.shape[0],1))
      out.d=d

    if 'x' in coords:
      if v.ndim==2: X=np.tile(X,(v.shape[0],1))
      out.x=X

    if 'y' in coords:
      if v.ndim==2: Y=np.tile(Y,(v.shape[0],1))
      out.y=Y

    if 't' in coords and self.hast(varname): out.t=self.time[time]

    out.coordsReq=','.join(sorted(coords))
    return out