예제 #1
0
  def plot_data(self,**kargs):
    prjtype=kargs.pop('prjtype','nice')

    from matplotlib.cm import gist_earth_r

    if 0:
      j=np.ceil(np.median(range(len(self)))).astype('i')
      ht=ticks.loose_label_n(self[j].h.min(),self[j].h.max(),7)
    else:
      ht=ticks.loose_label_n(self[0].h.min(),self[0].h.max(),7)

    if len(self)>1:
      ht2=ticks.loose_label_n(ht[0],ht[1]/2,5)[1:]
      ht=np.concatenate(([ht[0]],ht2,ht[1:]))
      ht=np.unique(np.sort(ht))

    ht=kargs.get('field__cvals',ht)
    ht=kargs.get('cvals',ht)

    # contour colors:
    from matplotlib import rcParams
    colors=rcParams['axes.prop_cycle']()

    for c,i in enumerate(self):
      h=np.ma.masked_where(i.mask==0,i.h)
      b=vis.Data(x=i.lon,y=i.lat,v=h)
      b.set_param(field__plot='contourf',field__cvals=ht,field__cmap=gist_earth_r)
      b.set_param(**kargs)
      if c==0:
        a=b
      else:
        a.extra+=[b]

      c=vis.Data(x=i.lon,y=i.lat,v=h)
      c.set_param(field__plot='contour',field__cvals=ht,field__cmap=next(colors)['color'],
                  field__linewidths=0.5,plot__zorder=2) # show above everything else
      c.label='bathy'
      a.extra+=[c]

    # show all borders:
    for i in self:
      xb,yb=i.border()
      c=vis.Data(x=xb,v=yb)
      c.set_param(d1_line__options=dict(lw=0.5,color='k',ls='-'))
      a.extra+=[c]


    # about projection:
    if prjtype=='original' and self[0].proj_info['basemap_opts0']: d=self[0].proj_info['basemap_opts0']
    elif prjtype=='nice': d=self[0].proj_info['basemap_opts']

    a.set_projection(d)

    return vis.MData([a])
예제 #2
0
파일: roms.py 프로젝트: bssrdf/okean
  def plot(self,**kargs):
    from okean import vis
    from matplotlib.cm import gist_earth_r
    h=np.ma.masked_where(self.mask==0,self.h)
    a=vis.Data(x=self.lon,y=self.lat,v=h)
    ht=ticks.loose_label_n(self.h.min(),self.h.max(),7)
    a.set_param(field__plot='contourf',field__cvals=ht,field__cmap=gist_earth_r)
    a.set_param(**kargs)

    # also show domain boundary:
    xb,yb=self.border()
    b=vis.Data(x=xb,v=yb)
    b.set_param(d1_line__options=dict(lw=0.5,color='k',ls='-'))
    a.extra=[b]

    a.plot(labels=0)

    return a
예제 #3
0
  def plot_data(self,**kargs):
    prjtype=kargs.pop('prjtype','nice')
    from matplotlib.cm import gist_earth_r
    h=np.ma.masked_where(self.mask==0,self.h)
    a=vis.Data(x=self.lon,y=self.lat,v=h)
    ht=ticks.loose_label_n(self.h.min(),self.h.max(),7)
    a.set_param(field__plot='contourf',field__cvals=ht,field__cmap=gist_earth_r)
    a.set_param(**kargs)

    # also show domain boundary:
    xb,yb=self.border()
    b=vis.Data(x=xb,v=yb)
    b.set_param(d1_line__options=dict(lw=0.5,color='k',ls='-'))
    a.extra=[b]

    # about projection:
    if prjtype=='original' and self.proj_info['basemap_opts0']: d=self.proj_info['basemap_opts0']
    elif prjtype=='nice': d=self.proj_info['basemap_opts']

    a.set_projection(d)

    return a
예제 #4
0
  def slicek(self,varname,ind,time=0,**opts):
    coords=opts.get('coords',self._default_coords('slicek')).split(',')

    out=vis.Data()
    out.label='slicek'
    out.msg=self.check_slice(varname,t=time,k=ind)
    if out.msg: return out

    v=self.use(varname,SEARCHtime=time,s_SEARCH=ind)

    # add mask if not masked:
    if not np.ma.isMA(v): 
###      m=self.grid.vars(ruvp=self.var_at(varname)[0])[-1]
      m=self.grid.vars(ruvp=self.vloc(varname)[0])[-1]
      v=np.ma.masked_where(m==0,v)

    out.v=v
    out.info['v']['name']=varname
#####    if self.hasz(varname): out.info['v']['slice']='k=%d'%ind
    if 'z' in self.vaxes(varname): out.info['v']['slice']='k=%d'%ind
    try: out.info['v']['units']=netcdf.vatt(self.nc,varname,'units')
    except: pass


    # coords:
    if 'z' in coords and 'z' in self.vaxes(varname):
      out.z=self.s_levels(time,k=ind,loc=self.vloc(varname))
      out.info['z']=dict(name='Depth',units='m')


    if any([i in coords for i in 'xy']):
      x,y,h,m=self.grid.vars(ruvp=self.vloc(varname)[0])

    if 'x' in coords:
       if self.grid.spherical:
         out.x=x
         out.info['x']=dict(name='Longitude',units=r'$\^o$E')
       else:
         out.x=x/1000.
         out.info['x']=dict(name='Distance',units='km')

    if 'y' in coords:
       if self.grid.spherical:
         out.y=y
         out.info['y']=dict(name='Latitude',units=r'$\^o$N')
       else:
         out.y=y/1000.
         out.info['y']=dict(name='Distance',units='km')

    if 't' in coords and 't' in self.vaxes(varname): out.t=self.time[time]

    if out.v.ndim==2: # always?
      out.extra=[vis.Data()]
      if 'x' in coords: out.extra[0].x=out.x
      if 'y' in coords: out.extra[0].y=out.y
      out.extra[0].v=h
      if h.max()>1000: cvals=200.,1000.
      elif h.max()>200: cvals=50.,100.,200.
      else: cvals=3
      out.extra[0].config['field.plot']='contour'
      out.extra[0].config['field.cvals']=cvals
      out.extra[0].config['field.cmap']='k'
      out.extra[0].label='bathy'


    out.coordsReq=','.join(sorted(coords))

    # about projection:
    out.set_projection(self.grid.proj_info['basemap_opts'])

    return out
예제 #5
0
  def slicej(self,varname,ind,time=0,**opts):
    coords=opts.get('coords',self._default_coords('slicej')).split(',')

    out=vis.Data()
    out.label='slicej'
    out.msg=self.check_slice(varname,t=time,j=ind)
    if out.msg: return out

    v=self.use(varname,SEARCHtime=time,eta_SEARCH=ind)

    # add mask if not masked:
    if not np.ma.isMA(v):
###      m=self.grid.vars(ruvp=self.var_at(varname)[0],j=ind)[-1]
      m=self.grid.vars(ruvp=self.vloc(varname)[0],j=ind)[-1]
      if v.ndim==2: m=np.tile(m,(v.shape[0],1))
      v=np.ma.masked_where(m==0,v)

    out.v=v
    out.info['v']['name']=varname
    out.info['v']['slice']='j=%d'%ind
    try: out.info['v']['units']=netcdf.vatt(self.name,varname,'units')
    except: pass

    # coords:
    if 'z' in coords and v.ndim==2:
######      out.z=self.s_levels(time=time,ruvpw=self.var_at(varname),j=ind)
###      out.z=self.s_levels(time=time,loc=self.var_at(varname),j=ind)
      out.z=self.s_levels(time=time,loc=self.vloc(varname),j=ind)
      out.info['z']=dict(name='Depth',units='m')

    if any([i in coords for i in 'xyd']):
###      x,y,h,m=self.grid.vars(ruvp=self.var_at(varname)[0],j=ind)
      x,y,h,m=self.grid.vars(ruvp=self.vloc(varname)[0],j=ind)

    if 'd' in coords:
      d=calc.distance(x,y)
      if d[-1]-d[0]>1e4:
        d=d/1000.
        dunits='km'
      else: dunits='m'

      if v.ndim==2: d=np.tile(d,(v.shape[0],1))
      out.d=d
      out.info['d']=dict(name='Distance',units=dunits)

    if 'x' in coords:
      if v.ndim==2: x=np.tile(x,(v.shape[0],1))
      out.x=x
      out.info['x']=dict(name='Longitude',units=r'$\^o$E')

    if 'y' in coords:
      if v.ndim==2: y=np.tile(y,(v.shape[0],1))
      out.y=y
      out.info['y']=dict(name='Latitude',units=r'$\^o$N')

########    if 't' in coords and self.hast(varname): out.t=self.time[time]
    if 't' in coords and 't' in self.vaxes(varname): out.t=self.time[time]

    if v.ndim==2:
      out.extra=[vis.Data()]
      if 'd' in coords: out.extra[0].x=out.d[0]
      if 'x' in coords: out.extra[0].y=out.x[0]
      if 'y' in coords: out.extra[0].x=out.y[0]
      out.extra[0].v=-h
      out.extra[0].config['d1.plot']='fill_between'
      out.extra[0].config['d1.y0']=-h.max()-(h.max()-h.min())/20.
      out.extra[0].label='bottom'

    out.coordsReq=','.join(sorted(coords))
    return out
예제 #6
0
  def _slice(self,slc,varname,ind,it0,**opts):
##    border=opts.get('border',1)

    if slc=='ll': x,y=ind

    o=[]
    It,twarn=self.tinds(it0)
    for c,i in enumerate(self):
      meth=getattr(i,'slice'+slc)
      if slc=='uv':  o+=[meth(ind,It[c],**opts)]
      elif slc=='ll':o+=[meth(varname,x,y,It[c],**opts)]
      else:          o+=[meth(varname,ind,It[c],**opts)]
      #if msg[c]:
      #  if o[-1].msg: o[-1].msg+='\n'
      #  o[-1].msg+=msg[c]


    # add filled border for next domain:
    if slc in ['i','j','k','z','iso']:#,'uv']:
      for i in range(len(self)-1):
        xb,yb=self[i+1].grid.border()
        o[i].extra+=[vis.Data(xb,yb)]
        o[i].extra[-1].label='border grid %d'%(i+1)
        #if i>0:
        o[i].extra[-1].config['d1.plot']='fill'
        o[i].extra[-1].config['d1_fill.options']['lw']=0
        o[i].extra[-1].config['d1_fill.options']['facecolor']='w'
        #o[i].extra[-1].config['plot.zorder']=1
        #else:
        #  o[i].extra[-1].config['d1.plot']='plot'
    elif slc=='uv': # for uv, better to mask arrows inside child domains
      if not hasattr(self.grid,'ingrd'): self.grid._set_ingrid('p')
      from functools import reduce
      for c,i in enumerate(o):
        if not i.v is None:
          if len(self.grid[c].ingrd_p):
            mask=reduce(lambda i,j: i&j,self.grid[c].ingrd_p)
            mask=mask&(~i.v.mask)
            i.nmask=mask # nested domains mask
            i.v.mask=i.v.mask|i.nmask
          else: i.nmask=None



    # vfield settings:
    if not o[0].v is None:
      vfield=o[0].get_param('vfield')
      if not vfield['options']['scale']:
        vfield['options']={'units':'width','scale':10}

      # use same vfield settings for all slices:
      for i in o:
        for k in vfield: i.config['vfield.'+k]=vfield[k]

      # no key for slices[1:]:
      for i in o[1:]:
        i.config['vfield.key_XYU']=0,0,0


    # field settings:
    if not o[0].v is None:
      field=o[0].get_param('field')

      if field['clim'] is False:
        if np.iscomplexobj(o[0].v):
          field['clim']=np.abs(o[0].v).min(),np.abs(o[0].v).max()
        else:
          field['clim']=o[0].v.min(),o[0].v.max()

        if field['clim'][0]==field['clim'][1]:
          field['clim']=field['clim'][0]-1,field['clim'][0]+1

      if field['cvals'] is False:
        tk=ticks.loose_label_n(field['clim'][0],field['clim'][1],7)
        field['cvals']=tk

      # use same field settings for all slices:
      for i in o:
        for k in field: i.config['field.'+k]=field[k]


    # also same settings for extras like bathy contours:
    Lab=['bathy']
    for lab in Lab:
      for e in o[0].extra:
        if e.label==lab and not e.v is None:
          field=e.get_param('field')
          if field['clim'] is False: field['clim']=e.v.min(),e.v.max()
          if field['cvals'] is False or  not calc.isiterable(field['cvals']):
            # the isiterable here is because it can be an integer (nof fixed set)
            tk=ticks.loose_label_n(field['clim'][0],field['clim'][1],3)
            field['cvals']=tk

      for i in o:
        for e in i.extra:
          if e.label==lab:
            for k in field: e.config['field.'+k]=field[k]

    # add border for all domains:
#    xb,yb=self.grid.border()
#    o[0].extra+=[vis.Data(x=xb,v=yb)]
    borders=[]
    for i in self:
      xb,yb=i.grid.border()
      c=vis.Data(x=xb,v=yb)
      c.set_param(d1_line__options=dict(lw=0.5,color='k',ls='-'))
      borders+=[c]

    o[-1].extra+=borders

    # set zorder:
    c=1
    for i in o:
      c+=0.1
      i.config['plot.zorder']=c
      for j in i.extra:
        c+=0.1
        j.config['plot.zorder']=c

    # place some stuff above continents:
    z=o[0].config['proj.continents']['zorder']
    z+=0.1
    # vfield:
    if slc=='uv':
      for i in o: i.config['plot.zorder']=z

    # place borders above continents:
    for b in borders: b.config['plot.zorder']=z


    return vis.MData(o,warnings=twarn)
예제 #7
0
  def time_series(self,varname,x,y,times=None,depth=None,**opts):
    coords=opts.get('coords',self._default_coords('time_series')).split(',')

    if times is None: times=range(0,self.time.size)

    # depth or s_level: check if is float or if is negative!
    isDepth=False
    if not depth is None:
       if calc.isiterable(depth): depth=np.asarray(depth)
       if calc.isarray(depth):
         isDepth=np.any(depth<0) or depth.kind!='i' 
       else: isDepth=depth<0 or np.asarray(depth).dtype.kind!='i'

    out=vis.Data()
    out.label='time_series'
    if not depth is None and not isDepth:
      out.msg=self.check_slice(varname,t=np.max(times),k=depth) 
    else:
      out.msg=self.check_slice(varname,t=np.max(times)) 

    if out.msg: return out

    # find nearest point:
###    lon,lat,hr,mr=self.grid.vars(ruvp=self.var_at(varname))
    lon,lat,hr,mr=self.grid.vars(ruvp=self.vloc(varname))
    dist=(lon-x)**2+(lat-y)**2
    i,j=np.where(dist==dist.min())
    i,j=i[0],j[0]

    if not depth is None and not isDepth: arg={'s_SEARCH':depth}
    else: arg={}
    v=self.use(varname,xiSEARCH=j,etaSEARCH=i,SEARCHtime=times,**arg).T

    # calculate depths:
###    if self.hasz(varname):
    if 'z' in self.vaxes(varname):
      h=self.grid.h[i,j]
      zeta=self.use('zeta',xiSEARCH=j,etaSEARCH=i,SEARCHtime=times)
      h=h+0*zeta
####      z=rt.s_levels(h,zeta,self.s_params,rw=varname)
###      z=rt.s_levels(h,zeta,self.s_params,rw=self.var_at(varname)[1])
      z=rt.s_levels(h,zeta,self.s_params,rw=self.vloc(varname)[1])
      z=np.squeeze(z)

    # depth slice:
###    if isDepth and self.hasz(varname):
    if isDepth and 'z' in self.vaxes(varname):
      if v.ndim==2:
        # could use calc.griddata, but better use slicez cos data at
        # different times may be independent!
        if 0:
          from matplotlib.dates import date2num
          t=np.tile(date2num(self.time[times]),(v.shape[0],1))
          v=calc.griddata(t,z,v,t[0],depth+np.zeros(t[0].shape),
            extrap=opts.get('extrap',False),norm_xy=opts.get('norm_xy',False))
            # norm_xy True may be needed!
            # extrap also may be needed cos the 1st and last value may be masked!

        else:
          nt=len(times)
          land_mask=np.ones((nt,1),dtype=v.dtype) # needed for slicez... not used here!        

          v=rt.slicez(v[...,np.newaxis],land_mask,
               self.grid.h[i,j]*np.ones((nt,1),dtype=v.dtype), # bottom depth
               zeta[:,np.newaxis],self.s_params,depth,
               surface_masked=opts.get('surf_mask',True),
               spline=opts.get('spline',True))[...,0]

      else: # one time only
        v=np.interp(depth,z,v,left=np.nan,right=np.nan)
        v=np.ma.masked_where(np.isnan(v),v) 


    out.v=v
    out.info['v']['name']=varname
    out.info['v']['slice']='time series'
    try: out.info['v']['units']=netcdf.vatt(self.nc,varname,'units')
    except: pass
     
    # coords
#########    if 't' in coords and self.hast(varname):
    if 't' in coords and 't' in self.vaxes(varname):
      if v.ndim==2:
        out.t=np.tile(self.time[times],(v.shape[0],1))
        from matplotlib.dates import date2num
        out.tnum=np.tile(date2num(self.time[times]),(v.shape[0],1))
      else: out.t=self.time[times]
      out.info['t']['name']='Time'
      out.info['tnum']=dict(name='Time',units=self.var_as['time']['units'])

###    if 'z' in coords and self.hasz(varname):
    if 'z' in coords and 'z' in self.vaxes(varname):
      if not depth is None:
        if not isDepth: out.z=z[depth,...]
        else: out.z=depth+0*v
      else: out.z=z
      out.info['z']=dict(name='Depth',units='m')

    if 'x' in coords:
      out.x=lon[i,j]
      if self.grid.spherical:
         out.info['x']=dict(name='Longitude',units=r'$\^o$E')
      else:
        out.x=x/1000.
        out.info['x']=dict(name='X-position',units='km')

    if 'y' in coords:
      out.y=lat[i,j]
      if self.grid.spherical:
        out.info['y']=dict(name='Latitude',units=r'$\^o$N')
      else:
        out.y=y/1000.
        out.info['y']=dict(name='Y-position',units='km')


    out.coordsReq=','.join(sorted(coords))
    return out
예제 #8
0
  def sliceiso(self,varname,iso,time,**opts):
    '''
    Depths where variable, increasing/dec with depth, has some value.

    Output is masked where surface is higher/lower than value or where all
    water column is lower/higher than value.
    '''


    coords=opts.get('coords',self._default_coords('sliceiso')).split(',')

    out=vis.Data()
    out.label='slice_iso'
    out.msg=self.check_slice(varname,t=time)
    if out.msg: return out

###    if not self.hasz(varname):
    if not 'z' in self.vaxes(varname):
      out.msg='a depth dependent variable is needed for sliceiso!'
      return out

    v=self.use(varname,SEARCHtime=time)
####    z=self.s_levels(time=time,ruvpw=self.var_at(varname))
###    z=self.s_levels(time=time,loc=self.var_at(varname))
    z=self.s_levels(time=time,loc=self.vloc(varname))
    v=rt.depthof(v,z,iso)

    out.v=v
    #out.info['v']['name']=varname
    out.info['v']['name']='depth'

    if isinstance(iso,np.ndarray) and iso.ndim==2: siso='2d'
    else: siso=str(iso)

    try:
      out.info['v']['slice']='%s (%s) iso=%s'%(varname,netcdf.vatt(self.nc,varname,'units'),siso)
    except:
      out.info['v']['slice']='%s iso=%s'%(varname,siso)
  
    out.info['v']['units']='metre'


    # coords:
    if any([i in coords for i in 'xy']):
###      x,y,h=self.grid.vars(ruvp=self.var_at(varname))[:3]
      x,y,h=self.grid.vars(ruvp=self.vloc(varname))[:3]

    if 'x' in coords:
       if self.grid.spherical:
         out.x=x
         out.info['x']=dict(name='Longitude',units=r'$\^o$E')
       else:
         out.x=x/1000.
         out.info['x']=dict(name='Distance',units='km')

    if 'y' in coords:
       if self.grid.spherical:
         out.y=y
         out.info['y']=dict(name='Latitude',units=r'$\^o$N')
       else:
         out.y=y/1000.
         out.info['y']=dict(name='Distance',units='km')

    if 'z' in coords:
      # makes no sense... v is the depth!
      coords.remove('z')

    if 't' in coords and 't' in self.vaxes(varname): out.t=self.time[time]

    if out.v.ndim==2:
      out.extra=[vis.Data()]
      if 'x' in coords: out.extra[0].x=out.x
      if 'y' in coords: out.extra[0].y=out.y
      out.extra[0].v=h
      if h.max()>1000: cvals=200.,1000.
      elif h.max()>200: cvals=50.,100.,200.
      else: cvals=3
      out.extra[0].config['field.plot']='contour'
      out.extra[0].config['field.cvals']=cvals
      out.extra[0].config['field.cmap']='k'
      out.extra[0].label='bathy'

    out.coordsReq=','.join(sorted(coords))

    # about projection:
    out.set_projection(self.grid.proj_info['basemap_opts'])

    return out
예제 #9
0
  def slicell(self,varname,X,Y,time=0,**opts):
    coords=opts.get('coords',self._default_coords('slicell')).split(',')

    data      = opts.get('data',False)
    extrap    = opts.get('extrap',False)
    maskLimit = opts.get('lmask',0.5) # points where interpolated mask are above
                                      # this value are considered as mask!
                                      # Most strict value is 0

    out=vis.Data()
    out.label='slicell'
    out.msg=self.check_slice(varname,t=time)
    if out.msg: return out#None,aux

    X=np.asarray(X)
    Y=np.asarray(Y)
    if X.ndim>1: X=np.squeeze(X)
    if Y.ndim>1: Y=np.squeeze(X)

###    x,y,h,m=self.grid.vars(ruvp=self.var_at(varname)[0])
    x,y,h,m=self.grid.vars(ruvp=self.vloc(varname)[0])
    if True: # extrat only portion of data needed:
      i0,i1,j0,j1=calc.ij_limits(x, y, (X.min(),X.max()),(Y.min(),Y.max()), margin=1)
      xi='%d:%d'%(i0,i1)
      eta='%d:%d'%(j0,j1)

      if data is False: V=self.use(varname,SEARCHtime=time,xi_SEARCH=xi,eta_SEARCH=eta)
      else: v=data[...,j0:j1,i0:i1]

      x=x[j0:j1,i0:i1]
      y=y[j0:j1,i0:i1]
      h=h[j0:j1,i0:i1]
      m=m[j0:j1,i0:i1]

    else:
      if data is False: V=self.use(varname,SEARCHtime=time)
      else: v=data

    if V.ndim==3:
      v=calc.griddata(x,y,V,X,Y,extrap=extrap,mask2d=m==0, keepMaskVal=maskLimit)
    elif V.ndim==2:
      v=calc.griddata(x,y,np.ma.masked_where(m==0,V),X,Y,extrap=extrap, keepMaskVal=maskLimit)

    out.v=v
    out.info['v']['name']=varname
    out.info['v']['slice']='path npts=%d'%X.size
    try: out.info['v']['units']=netcdf.vatt(self.nc,varname,'units')
    except: pass


    # coords:
    if 'z' in coords and V.ndim==3:
      inds=dict(xi=(i0,i1),eta=(j0,j1))
#########      out.z=self.path_s_levels(time,X,Y,rw=varname[0],inds=inds)
###      out.z=self.path_s_levels(time,X,Y,rw=self.var_at(varname)[1],inds=inds)
###
#######      out.z,zw=self.path_s_levels(time,X,Y,rw=False,inds=inds)
#######      if self.vloc(varname)[1]=='w': out.z=zw
      out.z=self.path_s_levels(time,X,Y,rw=self.vloc(varname)[1],inds=inds)
      out.info['z']=dict(name='Depth',units='m')

    if 'd' in coords:
      d=calc.distance(X,Y)
      if d[-1]-d[0]>1e4:
        d=d/1000.
        dunits='km'
      else: dunits='m'

      if v.ndim==2: d=np.tile(d,(v.shape[0],1))
      out.d=d
      out.info['d']=dict(name='Distance',units=dunits)

    if 'x' in coords:
      if v.ndim==2: X=np.tile(X,(v.shape[0],1))
      out.x=X
      out.info['x']=dict(name='Longitude',units=r'$\^o$E')

    if 'y' in coords:
      if v.ndim==2: Y=np.tile(Y,(v.shape[0],1))
      out.y=Y
      out.info['y']=dict(name='Latitude',units=r'$\^o$N')

#######    if 't' in coords and self.hast(varname): out.t=self.time[time]
    if 't' in coords and 't' in self.vaxes(varname): out.t=self.time[time]

    if v.ndim==2: ################3 and not out.z is None: # zeta and bottom already calculated
      out.extra=[vis.Data()]
      if 'd' in coords: out.extra[0].x=out.d[0]
      if 'x' in coords: out.extra[0].y=out.x[0]
      if 'y' in coords: out.extra[0].x=out.y[0]
####      #h=-zw[0]
      h    = calc.griddata(x,y,h,X,Y,extrap=False)
      out.extra[0].v=-h # bottom
      out.extra[0].config['d1.plot']='fill_between'
      out.extra[0].config['d1.y0']=-h.max()-(h.max()-h.min())/20.
      out.extra[0].label='bottom'



    out.coordsReq=','.join(sorted(coords))
    return out
예제 #10
0
  def slicez(self,varname,ind,time=0,**opts):
    surf_mask=opts.get('surf_mask',True)
    spline=opts.get('spline',True)
    coords=opts.get('coords',self._default_coords('slicez')).split(',')

    out=vis.Data()
    out.label='slicez'
    out.msg=self.check_slice(varname,t=time)
    if out.msg: return out

    if not 'z' in self.vaxes(varname):
      return self.slicek(varname,ind,time,**opts)

    v=self.use(varname,SEARCHtime=time)
###    x,y,h,m=self.grid.vars(ruvp=self.var_at(varname)[0])
    x,y,h,m=self.grid.vars(ruvp=self.vloc(varname)[0])
    zeta=self.use('zeta',SEARCHtime=time)
    zeta=rt.rho2uvp(zeta,varname)

    out.v=rt.slicez(v,m,h,zeta,self.s_params,ind,surf_mask,spline)

    out.info['v']['name']=varname
    if calc.isarray(ind):
      out.info['v']['slice']='z= array %.2f to %.2f'%(ind.min(),ind.max())
    else:
      out.info['v']['slice']='z=%d'%ind
    try: out.info['v']['units']=netcdf.vatt(self.nc,varname,'units')
    except: pass


    # coords:
    if 'x' in coords:
       if self.grid.spherical:
         out.x=x
         out.info['x']=dict(name='Longitude',units=r'$\^o$E')
       else:
         out.x=x/1000.
         out.info['x']=dict(name='Distance',units='km')

    if 'y' in coords:
       if self.grid.spherical:
         out.y=y
         out.info['y']=dict(name='Latitude',units=r'$\^o$N')
       else:
         out.y=y/1000.
         out.info['y']=dict(name='Distance',units='km')

    if 'z' in coords:
      out.z=ind+np.zeros(out.v.shape)
      out.info['z']=dict(name='Depth',units='m')

    if 't' in coords and 't' in self.vaxes(varname): out.t=self.time[time]

    if out.v.ndim==2:
      out.extra=[vis.Data()]
      if 'x' in coords: out.extra[0].x=out.x
      if 'y' in coords: out.extra[0].y=out.y
      out.extra[0].v=h
      if h.max()>1000: cvals=200.,1000.
      elif h.max()>200: cvals=50.,100.,200.
      else: cvals=3
      out.extra[0].config['field.plot']='contour'
      out.extra[0].config['field.cvals']=cvals
      out.extra[0].config['field.cmap']='k'
      out.extra[0].label='bathy'


    out.coordsReq=','.join(sorted(coords))

    # about projection:
    out.set_projection(self.grid.proj_info['basemap_opts'])

    return out