def test_rowUncertainty(self): """rowUncertainty: should handle full and empty profiles """ p = Profile(array([[.25,.25,.25,.25],[.5,.5,0,0]]),"ABCD") self.assertEqual(p.rowUncertainty(),[2,1]) #for empty rows 0 is returned as the uncertainty self.assertEqual(self.empty.rowUncertainty().tolist(),[]) p = Profile(array([[],[],[]]),"") self.assertEqual(p.rowUncertainty().tolist(),[]) #doesn't work on 1D array self.assertRaises(ProfileError,self.oned.rowUncertainty)
class ProfileTests(TestCase): """Tests for Profile object""" def setUp(self): """setUp method for all Profile tests""" self.full = Profile(array([[2,4],[3,5],[4,8]]),"AB") self.empty = Profile(array([[]]),"AB") self.empty_row = Profile(array([[1,1],[0,0]]), "AB") self.empty_col = Profile(array([[0,1],[0,1]]), "AB") self.consensus = Profile(array([[.2,0,.8,0],[0,.1,.2,.7],[0,0,0,1],\ [.2,.3,.4,.1],[.5,.5,0,0]]),\ Alphabet=DnaAlphabet, CharOrder="TCAG") self.not_same_value = Profile(array([[.3,.5,.1,.1],[.4,.6,0,.7],\ [.3,.2,0,0],[0,0,4,0]]),Alphabet=DnaAlphabet, CharOrder="TCAG") self.zero_entry = Profile(array([[.3,.2,0,.5],[0,0,.8,.2]]),\ Alphabet="UCAG") self.score1 = Profile(Data=array([[-1,0,1,2],[-2,2,0,0],[-3,5,1,0]]),\ Alphabet=DnaAlphabet, CharOrder="ATGC") self.score2 = Profile(array([[.2,.4,.4,0],[.1,0,.9,0],[.1,.2,.3,.4]]),\ Alphabet="TCAG") self.oned = Profile(array([.25,.25,.25,.25]),"ABCD") def test_init(self): """__init__: should set all attributed correctly""" self.assertRaises(TypeError, Profile) self.assertRaises(TypeError, Profile, array([[2,3]])) #only alphabet p = Profile(array([[.2,.8],[.7,.3]]),"AB") self.assertEqual(p.Data, [[.2,.8],[.7,.3]]) self.assertEqual(p.Alphabet, "AB") self.assertEqual(p.CharOrder, list("AB")) self.assertEqual(translate("ABBA",p._translation_table), "\x00\x01\x01\x00") #alphabet and char order p = Profile(array([[.1,.2],[.4,.3]]),Alphabet=DnaAlphabet, CharOrder="AG") self.assertEqual(p.CharOrder,"AG") assert p.Alphabet is DnaAlphabet #non-character alphabet p = Profile(array([[.1,.2],[.4,.3]]),Alphabet=[7,3], CharOrder=[3,7]) self.assertEqual(p.CharOrder,[3,7]) self.assertEqual(p.Alphabet, [7,3]) self.assertEqual(p.Data, [[.1,.2],[.4,.3]]) def test_str(self): """__str__: should return string representation of data in profile """ self.assertEqual(str(self.empty_row),str(array([[1,1],[0,0]]))) def test_make_translation_table(self): """_make_translation_table: should return correct table from char order """ p = Profile(array([[.2,.8],[.7,.3]]),"ABCDE","AB") self.assertEqual(translate("ABBA",p._translation_table), "\x00\x01\x01\x00") def test_hasValidData(self): """hasValidData: should work on full and empty profiles""" full = self.full.copy() full.normalizePositions() self.assertEqual(full.hasValidData(),True) self.assertEqual(self.empty_row.hasValidData(),False) self.assertEqual(self.empty.hasValidData(),False) def test_hasValidAttributes(self): """hasValidAttributes: should work for different alphabets/char orders """ p = Profile(array([[1,2],[3,4]]),Alphabet="ABCD", CharOrder="BAC") #self.Data doesn't match len(CharOrder) self.assertEqual(p.hasValidAttributes(),False) p = Profile(array([[1,2],[3,4]]),Alphabet="ABCD", CharOrder="AX") #not all chars in CharOrder in Alphabet self.assertEqual(p.hasValidAttributes(),False) p = Profile(array([[1,2],[3,4]]),Alphabet="ABCD", CharOrder="CB") #should be fine self.assertEqual(p.hasValidAttributes(),True) def test_isValid(self): """isValid: should work as expected""" #everything valid p1 = Profile(array([[.3,.7],[.8,.2]]),Alphabet="AB",CharOrder="AB") #invalid data, valid attributes p2 = Profile(array([[1,2],[3,4]]),Alphabet="ABCD", CharOrder="BA") #invalid attributes, valid data p3 = Profile(array([[.3,.7],[.8,.2]]),Alphabet="ABCD",CharOrder="AF") self.assertEqual(p1.isValid(),True) self.assertEqual(p2.isValid(),False) self.assertEqual(p3.isValid(),False) def test_copy(self): """copy: should act as expected while rebinding/modifying attributes """ p = Profile(array([[1,1],[.7,.3]]),{'A':'A','G':'G','R':'AG'},"AG") p_copy = p.copy() assert p.Data is p_copy.Data assert p.Alphabet is p_copy.Alphabet assert p.CharOrder is p_copy.CharOrder #modifying p.Data modifies p_copy.Data p.Data[1,1] = 100 assert p.Alphabet is p_copy.Alphabet #normalizing p.Data rebinds it, so p_copy.Data is unchanged p.normalizePositions() assert not p.Data is p_copy.Data #Adding something to the alphabet changes both p and p_copy p.Alphabet['Y']='TC' assert p.Alphabet is p_copy.Alphabet #Rebinding the CharOrder does only change the original p.CharOrder='XX' assert not p.CharOrder is p_copy.CharOrder def test_normalizePositions(self): """normalizePositions: should normalize or raise appropriate error """ p = self.full.copy() p.normalizePositions() self.assertEqual(p.Data,array([[2/6,4/6],[3/8,5/8],[4/12,8/12]])) self.assertEqual(sum(p.Data,1),[1,1,1]) p = self.empty_col.copy() p.normalizePositions() self.assertEqual(p.Data,array([[0,1],[0,1]])) p = self.empty_row.copy() self.assertRaises(ProfileError,p.normalizePositions) p = Profile(array([[0.0,0.0]]),"AB") self.assertRaises(ProfileError,p.normalizePositions) #negative numbers!!!!!! p1 = Profile(array([[3,-2],[4,-3]]),"AB") p1.normalizePositions() self.assertEqual(p1.Data,array([[3,-2],[4,-3]])) p2 = Profile(array([[3,-3],[4,-3]]),"AB") self.assertRaises(ProfileError,p2.normalizePositions) def test_normalizeSequences(self): """normalizeSequences: should normalize or raise appropriate error """ p = self.full.copy() p.normalizeSequences() self.assertEqual(p.Data,array([[2/9,4/17],[3/9,5/17],[4/9,8/17]])) self.assertEqual(sum(p.Data),[1,1]) p = self.empty_row.copy() p.normalizeSequences() self.assertEqual(p.Data,array([[1,1],[0,0]])) p = self.empty_col.copy() self.assertRaises(ProfileError,p.normalizeSequences) p = Profile(array([[0.0],[0.0]]),"AB") self.assertRaises(ProfileError,p.normalizeSequences) #negative numbers!!!!!! p1 = Profile(array([[3,4],[-2,-3]]),"AB") p1.normalizeSequences() self.assertEqual(p1.Data,array([[3,4],[-2,-3]])) p2 = Profile(array([[3,4],[-3,-3]]),"AB") self.assertRaises(ProfileError,p2.normalizeSequences) def test_prettyPrint_without_parameters(self): """prettyPrint: should work without parameters passed in""" p = self.full self.assertEqual(p.prettyPrint(),"2\t4\n3\t5\n4\t8") self.assertEqual(p.prettyPrint(include_header=True),\ "A\tB\n2\t4\n3\t5\n4\t8") self.assertEqual(p.prettyPrint(transpose_data=True),\ "2\t3\t4\n4\t5\t8") self.assertEqual(p.prettyPrint(include_header=True,\ transpose_data=True),"A\t2\t3\t4\nB\t4\t5\t8") #empty self.assertEqual(self.empty.prettyPrint(),"") self.assertEqual(self.empty.prettyPrint(transpose_data=True),"") #it will still print with invalid data (e.g if len(CharOrder) #doesn't match the data p = self.full.copy() p.CharOrder="ABC" self.assertEqual(p.prettyPrint(include_header=True),\ "A\tB\tC\n2\t4\n3\t5\n4\t8") #it will truncate the CharOrder if data is transposed #and CharOrder is longer then the number of rows in the #transposed data self.assertEqual(p.prettyPrint(include_header=True,\ transpose_data=True),"A\t2\t3\t4\nB\t4\t5\t8") def test_reduce_wrong_size(self): """reduce: should fail when profiles have different sizes""" p1 = Profile(array([[1,0],[0,1]]),Alphabet="AB") p2 = Profile(array([[1,0,0],[1,0,0]]),Alphabet="ABC") self.assertRaises(ProfileError,p1.reduce,p2) def test_reduce_normalization_error(self): """reduce: fails when input or output can't be normalized""" #Will raise errors when input data can't be normalized self.assertRaises(ProfileError,self.empty.reduce,self.empty,add) self.assertRaises(ProfileError,self.full.reduce,self.empty_row,add) #don't normalize input, but do normalize output #fails when one row adds up to zero p1 = Profile(array([[3,3],[4,4]]),"AB") p2 = Profile(array([[3,3],[-4,-4]]),"AB") self.assertRaises(ProfileError,p1.reduce,p2,add,False,True) def test_reduce_operators(self): """reduce: should work fine with different operators """ #different operators, normalize input, don't normalize output p1 = Profile(array([[1,0,0],[0,1,0]]),Alphabet="ABC") p2 = Profile(array([[1,0,0],[0,0,1]]),Alphabet="ABC") self.assertEqual(p1.reduce(p2).Data,array([[1,0,0],[0,.5,.5]])) self.assertEqual(p1.reduce(p2,add,normalize_input=True,\ normalize_output=False).Data,array([[2,0,0],[0,1,1]])) self.assertEqual(p1.reduce(p2,subtract,normalize_input=True,\ normalize_output=False).Data,array([[0,0,0],[0,1,-1]])) self.assertEqual(p1.reduce(p2,multiply,normalize_input=True,\ normalize_output=False).Data,array([[1,0,0],[0,0,0]])) self.assertRaises(ProfileError,p1.reduce,p2,divide,\ normalize_input=True,normalize_output=False) #don't normalize and normalize only input p3 = Profile(array([[1,2],[3,4]]),Alphabet="AB") p4 = Profile(array([[4,3],[2,1]]),Alphabet="AB") self.assertEqual(p3.reduce(p4,add,normalize_input=False,\ normalize_output=False).Data,array([[5,5],[5,5]])) self.assertFloatEqual(p3.reduce(p4,add,normalize_input=True,\ normalize_output=False).Data,array([[19/21,23/21],[23/21,19/21]])) #normalize input and output p5 = Profile(array([[1,1,0,0],[1,1,1,1]]),Alphabet="ABCD") p6 = Profile(array([[1,0,0,0],[1,0,0,1]]),Alphabet="ABCD") self.assertEqual(p5.reduce(p6,add,normalize_input=True,\ normalize_output=True).Data,array([[.75,.25,0,0],\ [.375,.125,.125,.375]])) #it can collapse empty profiles when normalizing is turned off self.assertEqual(self.empty.reduce(self.empty,\ normalize_input=False,normalize_output=False).Data.tolist(),[[]]) #more specific tests of the operators will be in the #separate functions def test__add_(self): """__add__: should not normalize input or output, just add""" p1 = Profile(array([[.3,.4,.1,0],[.1,.1,.1,.7]]),Alphabet="ABCD") p2 = Profile(array([[1,0,0,0],[1,0,0,1]]),Alphabet="ABCD") self.assertEqual((p1+p2).Data, array([[1.3,.4,.1,0],[1.1,.1,.1,1.7]])) self.assertRaises(ProfileError,self.empty.__add__, p1) self.assertEqual((self.empty + self.empty).Data.tolist(),[[]]) def test__sub_(self): """__sub__: should subtract two profiles, no normalization""" p1 = Profile(array([[.3,.4,.1,0],[.1,.1,.1,.7]]),Alphabet="ABCD") p2 = Profile(array([[1,0,0,0],[1,0,0,1]]),Alphabet="ABCD") self.assertFloatEqual((p1-p2).Data, array([[-.7,.4,.1,0],\ [-.9,.1,.1,-.3]])) def test__mul_(self): """__mul__: should multiply two profiles, no normalization""" p1 = Profile(array([[1,-2,3,0],[1,1,1,.5]]),Alphabet="ABCD") p2 = Profile(array([[1,0,0,0],[1,0,3,2]]),Alphabet="ABCD") self.assertEqual((p1*p2).Data, array([[1,0,0,0],\ [1,0,3,1]])) def test__div_(self): """__div__ and __truediv__: always true division b/c __future__.division """ p1 = Profile(array([[2,3],[4,5]]),"AB") p2 = Profile(array([[1,0],[4,5]]),"AB") #Int 0 p3 = Profile(array([[1,0.0],[4,5]]),"AB") #Float 0.0 p4 = Profile(array([[1,2],[8.0,5]]),"AB") #Float 0.0 self.assertRaises(ProfileError, p1.__truediv__,p2) #infinity in result data self.assertRaises(ProfileError, p1.__div__, p3) self.assertFloatEqual((p1.__div__(p4)).Data, array([[2,1.5],[0.5,1]])) def test_distance(self): """distance: should return correct distance between the profiles """ p1 = Profile(array([[2,4],[3,1]]), "AB") p2 = Profile(array([[4,6],[5,3]]), "AB") p3 = Profile(array([[4,6],[5,3],[1,1]]), "AB") p4 = Profile(array([2,2]),"AB") p5 = Profile(array([2,2,2]),"AB") p6 = Profile(array([[]]),"AB") self.assertEqual(p1.distance(p2),4) self.assertEqual(p2.distance(p1),4) self.assertEqual(p1.distance(p4),sqrt(6)) self.assertEqual(p6.distance(p6),0) #Raises error when frames are not aligned self.assertRaises(ProfileError, p1.distance,p3) self.assertRaises(ProfileError,p1.distance,p5) def test_toOddsMatrix(self): """toOddsMatrix: should work on valid data or raise an error """ p = Profile(array([[.1,.3,.5,.1],[.25,.25,.25,.25],\ [.05,.8,.05,.1],[.7,.1,.1,.1],[.6,.15,.05,.2]]),\ Alphabet="ACTG") p_exp = Profile(array([[.4, 1.2, 2, .4],[1,1,1,1],[.2,3.2,.2,.4],\ [2.8,.4,.4,.4],[2.4,.6,.2,.8]]),Alphabet="ACTG") self.assertEqual(p.toOddsMatrix().Data,p_exp.Data) assert p.Alphabet is p.toOddsMatrix().Alphabet self.assertEqual(p.toOddsMatrix([.25,.25,.25,.25]).Data,p_exp.Data) #fails if symbol_freqs has wrong size self.assertRaises(ProfileError, p.toOddsMatrix,\ [.25,.25,.25,.25,.25,.25]) self.assertRaises(ProfileError, self.zero_entry.toOddsMatrix,\ [.1,.2,.3]) #works on empty profile self.assertEqual(self.empty.toOddsMatrix().Data.tolist(),[[]]) #works with different input self.assertEqual(self.zero_entry.toOddsMatrix().Data,\ array([[1.2,.8,0,2],[0,0,3.2,.8]])) self.assertFloatEqual(self.zero_entry.toOddsMatrix([.1,.2,.3,.4]).Data,\ array([[3,1,0,1.25],[0,0,2.667,.5]]),1e-3) #fails when one of the background frequencies is 0 self.assertRaises(ProfileError, self.zero_entry.toOddsMatrix,\ [.1,.2,.3,0]) def test_toLogOddsMatrix(self): """toLogOddsMatrix: should work as expected""" #This test can be short, because it mainly depends on toOddsMatrix #for which everything has been tested p = Profile(array([[.1,.3,.5,.1],[.25,.25,.25,.25],\ [.05,.8,.05,.1],[.7,.1,.1,.1],[.6,.15,.05,.2]]),\ Alphabet="ACTG") p_exp = Profile(array(\ [[-1.322, 0.263, 1., -1.322],\ [ 0., 0., 0., 0.],\ [-2.322, 1.678, -2.322, -1.322],\ [ 1.485, -1.322, -1.322, -1.322],\ [ 1.263, -0.737, -2.322, -0.322]]),\ Alphabet="ACTG") self.assertFloatEqual(p.toLogOddsMatrix().Data,p_exp.Data,eps=1e-3) #works on empty matrix self.assertEqual(self.empty.toLogOddsMatrix().Data.tolist(),[[]]) def test__score_indices(self): """_score_indices: should work on valid input""" self.assertEqual(self.score1._score_indices(array([0,1,1,3,0,3]),\ offset=0),[6,2,-3,0]) self.assertFloatEqual(self.score2._score_indices(\ array([3,1,2,0,2,2,3]), offset=0),[.3,1.4,.8,1.4,1.7]) self.assertFloatEqual(self.score2._score_indices(\ array([3,1,2,0,2,2,3]), offset=3),[1.4,1.7]) #Errors will be raised on invalid input. Errors are not handled #in this method. Validation of the input is done elsewhere self.assertRaises(IndexError,self.score2._score_indices,\ array([3,1,63,0,4,2,3]), offset=3) def test__score_profile(self): """_score_profile: should work on valid input""" p1 = Profile(array([[1,0,0,0],[0,1,0,0],[0,0,.5,.5],[0,0,0,1],\ [.25,.25,.25,.25]]),"TCAG") p2 = Profile(array([[0,1,0,0],[.2,0,.8,0],[0,0,.5,.5],[1/3,1/3,0,1/3],\ [.25,.25,.25,.25]]),"TCAG") self.assertFloatEqual(self.score2._score_profile(p1,offset=0),\ [.55,1.25,.45]) self.assertFloatEqual(self.score2._score_profile(p1,offset=2),\ [.45]) self.assertFloatEqual(self.score2._score_profile(p2,offset=0),\ [1.49,1.043,.483],1e-3) #Errors will be raised on invalid input. Errors are not handled #in this method. Validation of the input is done elsewhere #In this case you don't get an error, but for sure an unexpected #result self.assertFloatEqual(self.score2._score_profile(p1,offset=3).tolist(),\ []) def test_score_sequence(self): """score: should work correctly for Sequence as input """ #works on normal valid data self.assertEqual(self.score1.score("ATTCAC",offset=0),\ [6,2,-3,0]) self.assertFloatEqual(self.score2.score("TCAAGT",offset=0), [.5,1.6,1.7,0.5]) #works with different offset self.assertFloatEqual(self.score2.score("TCAAGT",offset=2), [1.7,0.5]) self.assertFloatEqual(self.score2.score("TCAAGT",offset=3), [0.5]) #raises error on invalid offset self.assertRaises(ProfileError,self.score2.score,\ "TCAAGT",offset=4) #works on seq of minimal length self.assertFloatEqual(self.score2.score("AGT",offset=0), [0.5]) #raises error when sequence is too short self.assertRaises(ProfileError, self.score2.score,"",offset=0) #raises error on empty profile self.assertRaises(ProfileError,self.empty.score,"ACGT") #raises error when sequence contains characters that #are not in the characterorder self.assertRaises(ProfileError,self.score2.score,"ACBRT") def test_score_profile(self): """score: should work correctly for Profile as input """ p1 = Profile(array([[1,0,0,0],[0,1,0,0],[0,0,.5,.5],[0,0,0,1],\ [.25,.25,.25,.25]]),"TCAG") p2 = Profile(array([[0,1,0,0],[.2,0,.8,0],[0,0,.5,.5],[1/3,1/3,0,1/3],\ [.25,.25,.25,.25]]),"TCAG") p3 = Profile(array([[1,0,0,0],[0,1,0,0],[0,0,0,1]]),"TCAG") p4 = Profile(array([[1,0,0,0],[0,1,0,0]]),"TCAG") p5 = Profile(array([[1,0,0,0],[0,1,0,0],[0,0,0,1]]),"AGTC") #works on normal valid data self.assertFloatEqual(self.score2.score(p1,offset=0),\ [.55,1.25,.45]) self.assertFloatEqual(self.score2.score(p2,offset=0), [1.49,1.043,.483],1e-3) #works with different offset self.assertFloatEqual(self.score2.score(p1,offset=1), [1.25,0.45]) self.assertFloatEqual(self.score2.score(p1,offset=2), [0.45]) #raises error on invalid offset self.assertRaises(ProfileError,self.score2.score,\ p1,offset=3) #works on profile of minimal length self.assertFloatEqual(self.score2.score(p3,offset=0), [0.6]) #raises error when profile is too short self.assertRaises(ProfileError, self.score2.score,p4,offset=0) #raises error on empty profile self.assertRaises(ProfileError,self.empty.score,p1) #raises error when character order doesn't match self.assertRaises(ProfileError,self.score2.score,p5) def test_rowUncertainty(self): """rowUncertainty: should handle full and empty profiles """ p = Profile(array([[.25,.25,.25,.25],[.5,.5,0,0]]),"ABCD") self.assertEqual(p.rowUncertainty(),[2,1]) #for empty rows 0 is returned as the uncertainty self.assertEqual(self.empty.rowUncertainty().tolist(),[]) p = Profile(array([[],[],[]]),"") self.assertEqual(p.rowUncertainty().tolist(),[]) #doesn't work on 1D array self.assertRaises(ProfileError,self.oned.rowUncertainty) def test_columnUncertainty(self): """columnUncertainty: should handle full and empty profiles """ p = Profile(array([[.25,.5],[.25,.5],[.25,0],[.25,0]]),"AB") self.assertEqual(p.columnUncertainty(),[2,1]) #for empty cols nothing is returned as the uncertainty self.assertEqual(self.empty.columnUncertainty().tolist(),[]) p = Profile(array([[],[],[]]),"") self.assertEqual(p.columnUncertainty().tolist(),[]) #doesn't work on 1D array self.assertRaises(ProfileError,self.oned.columnUncertainty) def test_rowDegeneracy(self): """rowDegneracy: should work as expected""" p1 = self.consensus p2 = self.not_same_value self.assertEqual(p1.rowDegeneracy(),[1,1,1,2,1]) self.assertEqual(p1.rowDegeneracy(cutoff=.5),[1,1,1,2,1]) self.assertEqual(p1.rowDegeneracy(cutoff=.75),[1,2,1,3,2]) #when a row seems to add up to the cutoff value, it's not #always found because of floating point error. E.g. second row #in this example self.assertEqual(p1.rowDegeneracy(cutoff=1),[2,4,1,4,2]) #when the cutoff can't be found, the number of columns in the #profile is returned (for each row) self.assertEqual(p1.rowDegeneracy(cutoff=1.5),[4,4,4,4,4]) self.assertEqual(p2.rowDegeneracy(cutoff=.95),[4,2,4,1]) self.assertEqual(p2.rowDegeneracy(cutoff=1.4),[4,3,4,1]) self.assertEqual(self.empty.rowDegeneracy(),[]) def test_columnDegeneracy(self): """columnDegeneracy: shoudl work as expected""" p1 = self.consensus p1.Data = transpose(p1.Data) p2 = self.not_same_value p2.Data = transpose(p2.Data) self.assertEqual(p1.columnDegeneracy(),[1,1,1,2,1]) self.assertEqual(p1.columnDegeneracy(cutoff=.5),[1,1,1,2,1]) self.assertEqual(p1.columnDegeneracy(cutoff=.75),[1,2,1,3,2]) #when a row seems to add up to the cutoff value, it's not #always found because of floating point error. E.g. second row #in this example self.assertEqual(p1.columnDegeneracy(cutoff=1),[2,4,1,4,2]) #when the cutoff can't be found, the number of rows in the #profile is returned (for each column) self.assertEqual(p1.columnDegeneracy(cutoff=1.5),[4,4,4,4,4]) self.assertEqual(p2.columnDegeneracy(cutoff=.95),[4,2,4,1]) self.assertEqual(p2.columnDegeneracy(cutoff=1.4),[4,3,4,1]) self.assertEqual(self.empty.columnDegeneracy(),[]) def test_rowMax(self): """rowMax should return max value in each row""" p1 = self.consensus obs = p1.rowMax() self.assertEqual(obs, array([.8, .7, 1, .4, .5])) def test_toConsensus(self): """toConsensus: should work with all the different options """ p = self.consensus self.assertEqual(p.toConsensus(fully_degenerate=False),"AGGAT") self.assertEqual(p.toConsensus(fully_degenerate=True),"WVGNY") self.assertEqual(p.toConsensus(cutoff=0.75),"ARGHY") self.assertEqual(p.toConsensus(cutoff=0.95),"WVGNY") self.assertEqual(p.toConsensus(cutoff=2),"WVGNY") p = self.not_same_value self.assertEqual(p.toConsensus(fully_degenerate=False),"CGTA") self.assertEqual(p.toConsensus(fully_degenerate=True),"NBYA") self.assertEqual(p.toConsensus(cutoff=0.75),"YSYA") self.assertEqual(p.toConsensus(cutoff=2),"NBYA") self.assertEqual(p.toConsensus(cutoff=5),"NBYA") #when you specify both fully_generate and a cutoff value #the cutoff takes priority and is used in the calculation self.assertEqual(p.toConsensus(cutoff=0.75,fully_degenerate=True),\ "YSYA") #raises AttributeError when Alphabet doens't have Degenerates p = Profile(array([[.2,.8],[.7,.3]]),"AB") self.assertRaises(AttributeError,p.toConsensus,cutoff=.5) def test_toConsensus_include_all(self): """toConsensus: Should include all possibilities when include_all=True """ p1 = Profile(array([[.2,0,.8,0],[0,.1,.2,.7],[0,0,0,1],\ [.2,.3,.4,.1],[.5,.5,0,0]]),\ Alphabet=DnaAlphabet, CharOrder="TCAG") self.assertEqual(p1.toConsensus(cutoff=0.4, include_all=True),\ "AGGAY") p2 = Profile(array([[.25,0.25,.25,0.25],[0.1,.1,.1,0],\ [.4,0,.4,0],[0,.2,0.2,0.3]]),\ Alphabet=DnaAlphabet, CharOrder="TCAG") self.assertEqual(p2.toConsensus(cutoff=0.4,\ include_all=True), "NHWV") def test_randomIndices(self): """randomIndices: 99% of new frequencies should be within 3*SD """ r_num, c_num = 100,20 num_elements = r_num*c_num r = random([r_num,c_num]) p = Profile(r,"A"*c_num) p.normalizePositions() d = p.Data n = 1000 #Test only works on normalized profile, b/c of 1-d below means = n*d three_stds = sqrt(d*(1-d)*n)*3 a = Alignment([p.randomIndices() for x in range(n)]) def absoluteProfile(alignment,char_order): f = a.columnFrequencies() res = zeros([len(f),len(char_order)]) for row, freq in enumerate(f): for i in freq: res[row, i] = freq[i] return res ap = absoluteProfile(a,p.CharOrder) failure = abs(ap-means) > three_stds assert sum(sum(failure))/num_elements <= 0.01 def test_randomSequence(self): """randomSequence: 99% of new frequencies should be within 3*SD""" r_num, c_num = 100,20 num_elements = r_num*c_num alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" r = random([r_num,c_num]) p = Profile(r,alpha[:c_num]) p.normalizePositions() d = p.Data n = 1000 #Test only works on normalized profile, b/c of 1-d below means = n*d three_stds = sqrt(d*(1-d)*n)*3 a = Alignment([p.randomSequence() for x in range(n)]) def absoluteProfile(alignment,char_order): f = a.columnFrequencies() res = zeros([len(f),len(char_order)]) for row, freq in enumerate(f): for i in freq: col = char_order.index(i) res[row, col] = freq[i] return res ap = absoluteProfile(a,p.CharOrder) failure = abs(ap-means) > three_stds assert sum(sum(failure))/num_elements <= 0.01