def roi_figure(conn, command_args): """ This processes the script parameters, adding defaults if needed. Then calls a method to make the figure, and finally uploads and attaches this to the primary image. @param: session The OMERO session @param: command_args Map of String:Object parameters for the script. Objects are not rtypes, since getValue() was called when the map was processed below. But, list and map objects may contain rtypes (need to call getValue()) @return: the id of the originalFileLink child. (ID object, not value) """ log("ROI figure created by OMERO on %s" % date.today()) log("") message = "" # message to be returned to the client pixel_ids = [] image_ids = [] image_labels = [] # function for getting image labels. def get_image_names(full_name, tags_list, pd_list): name = full_name.split("/")[-1] return [name] # default function for getting labels is getName (or use datasets / tags) if "Image_Labels" in command_args: if command_args["Image_Labels"] == "Datasets": def get_datasets(name, tags_list, pd_list): return [dataset for project, dataset in pd_list] get_labels = get_datasets elif command_args["Image_Labels"] == "Tags": def get_tags(name, tags_list, pd_list): return tags_list get_labels = get_tags else: get_labels = get_image_names else: get_labels = get_image_names # Get the images images, log_message = script_utils.get_objects(conn, command_args) message += log_message if not images: return None, message # Check for rectangular ROIs and filter images list images = [image for image in images if image.getROICount("Rectangle") > 0] if not images: message += "No rectangle ROI found." return None, message # Attach figure to the first image omero_image = images[0] # process the list of images. If image_ids is not set, script can't run. log("Image details:") for image in images: image_ids.append(image.getId()) pixel_ids.append(image.getPrimaryPixels().getId()) # a map of imageId : list of (project, dataset) names. pd_map = figUtil.getDatasetsProjectsFromImages(conn.getQueryService(), image_ids) tag_map = figUtil.getTagsFromImages(conn.getMetadataService(), image_ids) # Build a legend entry for each image for image in images: name = image.getName() image_date = image.getAcquisitionDate() iid = image.getId() tags_list = tag_map[iid] pd_list = pd_map[iid] tags = ", ".join(tags_list) pd_string = ", ".join(["%s/%s" % pd for pd in pd_list]) log(" Image: %s ID: %d" % (name, iid)) if image_date: log(" Date: %s" % image_date) else: log(" Date: not set") log(" Tags: %s" % tags) log(" Project/Datasets: %s" % pd_string) image_labels.append(get_labels(name, tags_list, pd_list)) # use the first image to define dimensions, channel colours etc. size_x = omero_image.getSizeX() size_y = omero_image.getSizeY() size_z = omero_image.getSizeZ() size_c = omero_image.getSizeC() width = size_x if "Width" in command_args: w = command_args["Width"] try: width = int(w) except ValueError: log("Invalid width: %s Using default value: %d" % (str(w), size_x)) height = size_y if "Height" in command_args: h = command_args["Height"] try: height = int(h) except ValueError: log("Invalid height: %s Using default value" % (str(h), size_y)) log("Image dimensions for all panels (pixels): width: %d height: %d" % (width, height)) merged_indexes = [] # the channels in the combined image, merged_colours = {} if "Merged_Colours" in command_args: c_colour_map = command_args["Merged_Colours"] for c in c_colour_map: rgb = c_colour_map[c] try: rgb = int(rgb) c_index = int(c) except ValueError: continue rgba = image_utils.int_to_rgba(rgb) merged_colours[c_index] = rgba merged_indexes.append(c_index) merged_indexes.sort() # make sure we have some merged channels if len(merged_indexes) == 0: merged_indexes = range(size_c) merged_indexes.reverse() merged_names = False if "Merged_Names" in command_args: merged_names = command_args["Merged_Names"] # Make channel-names map. If argument wasn't specified, name by index channel_names = {} if "Channel_Names" in command_args: c_name_map = command_args["Channel_Names"] for c in range(size_c): if str(c) in c_name_map: channel_names[c] = c_name_map[str(c)] else: channel_names[c] = str(c) else: for c in range(size_c): channel_names[c] = str(c) # Make split-indexes list. If no "Split_Indexes", show none: # http://www.openmicroscopy.org/community/viewtopic.php?f=4&t=940 split_indexes = [] if "Split_Indexes" in command_args: for index in command_args["Split_Indexes"]: split_indexes.append(index) colour_channels = True key = "Split_Panels_Grey" if key in command_args and command_args[key]: colour_channels = False algorithm = ProjectionType.MAXIMUMINTENSITY if "Algorithm" in command_args: a = command_args["Algorithm"] if (a == "Mean Intensity"): algorithm = ProjectionType.MEANINTENSITY stepping = 1 if "Stepping" in command_args: s = command_args["Stepping"] if (0 < s < size_z): stepping = s scalebar = None if "Scalebar" in command_args: sb = command_args["Scalebar"] try: scalebar = int(sb) if scalebar <= 0: scalebar = None else: log("Scalebar is %d microns" % scalebar) except ValueError: log("Invalid value for scalebar: %s" % str(sb)) scalebar = None overlay_colour = (255, 255, 255) if "Overlay_Colour" in command_args: r, g, b, a = OVERLAY_COLOURS[command_args["Overlay_Colour"]] overlay_colour = (r, g, b) roi_zoom = None if "ROI_Zoom" in command_args: roi_zoom = float(command_args["ROI_Zoom"]) if roi_zoom == 0: roi_zoom = None roi_label = "FigureROI" if "ROI_Label" in command_args: roi_label = command_args["ROI_Label"] spacer = (width / 50) + 2 fig = get_split_view(conn, image_ids, pixel_ids, split_indexes, channel_names, merged_names, colour_channels, merged_indexes, merged_colours, width, height, image_labels, spacer, algorithm, stepping, scalebar, overlay_colour, roi_zoom, roi_label) if fig is None: log_message = "No figure produced" log("\n" + log_message) message += log_message return None, message log("") fig_legend = "\n".join(log_strings) format = command_args["Format"] figure_name = "roi_figure" if "Figure_Name" in command_args: figure_name = command_args["Figure_Name"] figure_name = os.path.basename(figure_name) output = "localfile" if format == 'PNG': output = output + ".png" figure_name = figure_name + ".png" fig.save(output, "PNG") mimetype = "image/png" elif format == 'TIFF': output = output + ".tiff" figure_name = figure_name + ".tiff" fig.save(output, "TIFF") mimetype = "image/tiff" else: output = output + ".jpg" figure_name = figure_name + ".jpg" fig.save(output) mimetype = "image/jpeg" # Use util method to upload the figure 'output' to the server, attaching # it to the omeroImage, adding the # figLegend as the fileAnnotation description. # Returns the id of the originalFileLink child. (ID object, not value) namespace = NSCREATED + "/omero/figure_scripts/ROI_Split_Figure" file_annotation, fa_message = script_utils.create_link_file_annotation( conn, output, omero_image, output="ROI Split figure", mimetype=mimetype, namespace=namespace, description=fig_legend, orig_file_path_and_name=figure_name) message += fa_message return file_annotation, message
def split_view_figure(conn, script_params): """ Processes the arguments, populating defaults if necessary. Prints the details to log (fig-legend). Even handles missing arguments that are not optional (from when this ran from commandline with everything optional) then calls make_split_view_figure() to make the figure, attaches it to the Image as an 'originalFile' annotation, with fig-legend as the description. @return: the id of the originalFileLink child. (ID object, not value) """ log("Split-View figure created by OMERO on %s" % date.today()) log("") message = "" # message to be returned to the client image_ids = [] pixel_ids = [] image_labels = [] # function for getting image labels. def get_image_names(full_name, tags_list, pd_list): name = full_name.split("/")[-1] return [name.decode('utf8')] # default function for getting labels is getName (or use datasets / tags) if script_params["Image_Labels"] == "Datasets": def get_datasets(name, tags_list, pd_list): return [dataset.decode('utf8') for project, dataset in pd_list] get_labels = get_datasets elif script_params["Image_Labels"] == "Tags": def get_tags(name, tags_list, pd_list): return [t.decode('utf8') for t in tags_list] get_labels = get_tags else: get_labels = get_image_names # Get the images images, log_message = script_utils.get_objects(conn, script_params) message += log_message if not images: return None, message # Attach figure to the first image omero_image = images[0] # process the list of images log("Image details:") for image in images: image_ids.append(image.getId()) pixel_ids.append(image.getPrimaryPixels().getId()) # a map of imageId : list of (project, dataset) names. pd_map = figUtil.getDatasetsProjectsFromImages(conn.getQueryService(), image_ids) tag_map = figUtil.getTagsFromImages(conn.getMetadataService(), image_ids) # Build a legend entry for each image for image in images: name = image.getName() image_date = image.getAcquisitionDate() iid = image.getId() tags_list = tag_map[iid] pd_list = pd_map[iid] tags = ", ".join(tags_list) pd_string = ", ".join(["%s/%s" % pd for pd in pd_list]) log(" Image: %s ID: %d" % (name, iid)) if image_date: log(" Date: %s" % image_date) else: log(" Date: not set") log(" Tags: %s" % tags) log(" Project/Datasets: %s" % pd_string) image_labels.append(get_labels(name, tags_list, pd_list)) # use the first image to define dimensions, channel colours etc. size_x = omero_image.getSizeX() size_y = omero_image.getSizeY() size_z = omero_image.getSizeZ() size_c = omero_image.getSizeC() # set image dimensions z_start = -1 z_end = -1 if "Z_Start" in script_params: z_start = script_params["Z_Start"] if "Z_End" in script_params: z_end = script_params["Z_End"] width = "Width" in script_params and script_params["Width"] or size_x height = "Height" in script_params and script_params["Height"] or size_y log("Image dimensions for all panels (pixels): width: %d height: %d" % (width, height)) # Make split-indexes list. If argument wasn't specified, include them all. split_indexes = [] if "Split_Indexes" in script_params: split_indexes = script_params["Split_Indexes"] else: split_indexes = range(size_c) # Make channel-names map. If argument wasn't specified, name by index channel_names = {} for c in range(size_c): channel_names[c] = str(c) if "Channel_Names" in script_params: c_name_map = script_params["Channel_Names"] for c in c_name_map: index = int(c) channel_names[index] = c_name_map[c].decode('utf8') merged_indexes = [] # the channels in the combined image, merged_colours = {} if "Merged_Colours" in script_params: c_colour_map = script_params["Merged_Colours"] for c in c_colour_map: rgb = c_colour_map[c] try: rgb = int(rgb) c_index = int(c) except ValueError: continue rgba = image_utils.int_to_rgba(rgb) merged_colours[c_index] = rgba merged_indexes.append(c_index) merged_indexes.sort() else: merged_indexes = range(size_c) colour_channels = not script_params["Split_Panels_Grey"] algorithm = ProjectionType.MAXIMUMINTENSITY if "Mean Intensity" == script_params["Algorithm"]: algorithm = ProjectionType.MEANINTENSITY stepping = min(script_params["Stepping"], size_z) scalebar = None if "Scalebar" in script_params: scalebar = script_params["Scalebar"] log("Scalebar is %d microns" % scalebar) r, g, b, a = OVERLAY_COLOURS[script_params["Overlay_Colour"]] overlay_colour = (r, g, b) merged_names = script_params["Merged_Names"] fig = make_split_view_figure(conn, pixel_ids, z_start, z_end, split_indexes, channel_names, colour_channels, merged_indexes, merged_colours, merged_names, width, height, image_labels, algorithm, stepping, scalebar, overlay_colour) fig_legend = "\n".join(log_strings) figure_name = script_params["Figure_Name"] figure_name = os.path.basename(figure_name) output = "localfile" format = script_params["Format"] if format == 'PNG': output = output + ".png" figure_name = figure_name + ".png" fig.save(output, "PNG") mimetype = "image/png" elif format == 'TIFF': output = output + ".tiff" figure_name = figure_name + ".tiff" fig.save(output, "TIFF") mimetype = "image/tiff" else: output = output + ".jpg" figure_name = figure_name + ".jpg" fig.save(output) mimetype = "image/jpeg" # Upload the figure 'output' to the server, creating a file annotation and # attaching it to the omero_image, adding the # fig_legend as the fileAnnotation description. namespace = NSCREATED + "/omero/figure_scripts/Split_View_Figure" file_annotation, fa_message = script_utils.create_link_file_annotation( conn, output, omero_image, output="Split view figure", mimetype=mimetype, namespace=namespace, description=fig_legend, orig_file_path_and_name=figure_name) message += fa_message return file_annotation, message
def test_int_to_rgba(self, color): v = image_utils.int_to_rgba(color[4]) for x in range(0, 3): assert color[x] == v[x]