예제 #1
0
파일: validate2.py 프로젝트: sammatuba/omf
def convertTestData(modelDir, data, outputFilename):

    watts = []
    timeStamps = []
    samplePeriod = ''

    # parse provided csv files
    data = data.split('\n')
    firstRow = True
    for row in data:
        if str(row) != '':
            dataPoint = row.split(',')
            if firstRow:
                samplePeriod = dataPoint[0]
                firstRow = False
            else:
                timeStamps.append(dataPoint[0])
                watts.append(dataPoint[1])

    # format dataframe data structure and save in nilmtk format
    store = get_datastore(outputFilename, 'HDF', mode='w')
    df = pd.DataFrame({('power', 'apparent'): watts}, dtype=float)
    df.columns.set_names(LEVEL_NAMES, inplace=True)
    df.index = pd.to_datetime(timeStamps,
                              format='%Y-%m-%d %H:%M:%S',
                              exact=False,
                              utc=True)
    df = df.tz_convert('US/Eastern')
    df = df.sort_index()
    key = Key(building=1, meter=1)
    store.put(str(key), df)

    ## create the metadata files in accordance with nilmtk guidelines

    # building metatdata
    if not os.path.exists(pJoin(modelDir, 'test')):
        os.makedirs(pJoin(modelDir, 'test'))
    f = open(pJoin(modelDir, 'test', 'building1.yaml'), 'w')
    f.write('instance: 1\n')
    f.write('elec_meters:\n')
    f.write('  ' + '1: &generic\n')
    f.write('    ' + 'site_meter: true\n')
    f.write('    ' + 'device_model: generic\n')
    f.write('\nappliances: []')
    f.close()

    # dataset metadata
    f = open(pJoin(modelDir, 'test', 'dataset.yaml'), 'w')
    f.write('name: testData\n')
    f.close()

    # meter device metadata
    f = open(pJoin(modelDir, 'test', 'meter_devices.yaml'), 'w')
    f.write('generic:\n')
    f.write('  ' + 'model: generic\n')
    f.write('  ' + 'sample_period: ' + samplePeriod + '\n')
    f.write('  ' + 'max_sample_period: ' + samplePeriod + '\n')
    f.write('  ' + 'measurements:\n')
    f.write('  ' + '- physical_quantity: power\n')
    f.write('    ' + 'type: apparent\n')
    f.write('    ' + 'upper_limit: 1000000000\n')
    f.write('    ' + 'lower_limit: -100000000\n')
    f.close()

    # save data and metadata
    save_yaml_to_datastore(pJoin(modelDir, 'test'), store)
    store.close()

    return outputFilename
예제 #2
0
파일: validate2.py 프로젝트: sammatuba/omf
def convertTruthData(modelDir, data, outputFilename):

    watts = []
    timeStamps = []
    appliances = []
    samplePeriod = ''

    # parse provided csv files
    data = data.split('\n')
    firstRow = True
    for row in data:
        if str(row) != '':
            dataPoint = row.split(',')
            if firstRow:
                samplePeriod = dataPoint[0]
                firstRow = False
            else:
                timeStamps.append(dataPoint[0])
                watts.append(dataPoint[1])
                appliances.append(dataPoint[2])

    watts = np.array(watts)
    appliances = np.array(appliances)
    timeStamps = np.array(timeStamps)

    store = get_datastore(outputFilename, 'HDF', mode='w')

    # breakdown the data by appliance and set every time point where
    # the appliance wasnt used to 0

    uniqueAppliances = list(np.unique(appliances))

    for index, app in enumerate(uniqueAppliances):

        # get the time points where a given appliance is on and
        # also where it is off
        appIndices = np.where(appliances == app)[0]
        nonAppIndices = np.where(appliances != app)[0]

        # keep only the data for when the appliance is on
        wattsFiltered = np.delete(np.copy(watts), nonAppIndices)
        timeFiltered = np.delete(np.copy(timeStamps), nonAppIndices)

        # create zeroed data when the appliance is off
        timeFiller = np.setdiff1d(np.copy(timeStamps), timeFiltered)
        wattsFiller = np.zeros(timeFiller.shape)

        # combine the on and off data
        timeAll = np.append(timeFiller, timeFiltered)
        wattsAll = np.append(wattsFiller, wattsFiltered)

        # format dataframe data structure and save in nilmtk format
        df = pd.DataFrame({('power', 'apparent'): wattsAll}, dtype=float)
        df.index = pd.to_datetime(timeAll,
                                  format='%Y-%m-%d %H:%M:%S',
                                  exact=False,
                                  utc=True)
        df.columns.set_names(LEVEL_NAMES, inplace=True)
        df = df.tz_convert('US/Eastern')
        df = df.sort_index()

        key = Key(building=1, meter=index + 1)

        store.put(str(key), df)

    ## create the metadata files in accordance with nilmtk guidelines

    # building metatdata
    if not os.path.exists(pJoin(modelDir, 'truth')):
        os.makedirs(pJoin(modelDir, 'truth'))
    f = open(pJoin(modelDir, 'truth', 'building1.yaml'), 'w')
    f.write('instance: 1\n')
    f.write('elec_meters:\n')
    for index, app in enumerate(uniqueAppliances):
        if index == 0:
            f.write('  ' + '1: &generic\n')
            f.write('    ' + 'submeter_of: 0\n')
            f.write('    ' + 'device_model: generic\n')
        else:
            f.write('  ' + str(index + 1) + ': *generic\n')
    f.write('\nappliances:')
    for index, app in enumerate(uniqueAppliances):
        f.write('\n- ' + 'original_name: ' + app + '\n')
        f.write('  ' + 'type: unknown\n')
        f.write('  ' + 'instance: ' + str(index + 1) + '\n')
        f.write('  ' + 'meters: [' + str(index + 1) + ']\n')
    f.close()

    # dataset metadata
    f = open(pJoin(modelDir, 'truth', 'dataset.yaml'), 'w')
    f.write('name: truthData\n')
    f.close()

    # meterdevices metadata
    f = open(pJoin(modelDir, 'truth', 'meter_devices.yaml'), 'w')
    f.write('generic:\n')
    f.write('  ' + 'model: generic\n')
    f.write('  ' + 'sample_period: ' + samplePeriod + '\n')
    f.write('  ' + 'max_sample_period: ' + samplePeriod + '\n')
    f.write('  ' + 'measurements:\n')
    f.write('  ' + '- physical_quantity: power\n')
    f.write('    ' + 'type: apparent\n')
    f.write('    ' + 'upper_limit: 1000000000\n')
    f.write('    ' + 'lower_limit: -100000000\n')
    f.close()

    # save data and metadata
    save_yaml_to_datastore(pJoin(modelDir, 'truth'), store)
    store.close()

    return outputFilename