def hist(x, bins, density, weights, cumulative, bottom, histtype, color, key, label, linewidth, underflows, overflows, minvalue, maxvalue): swtplot.assert_is_native_chart() # check if we really got a precomputed histogram, using the trick documented for pyplot.hist if not np.array_equal(x, bins[:-1]): raise ValueError("Only precomputed histograms are accepted: the values in `x` must equal the values in `bins`, without the last one.") if weights is None or len(weights) != len(x): raise ValueError("The `weights` parameter must not be omitted, and it must have the same number of elements as `x`") props = {} props["Hist.Cumulative"] = str(cumulative) props["Hist.Density"] = str(density) props["Hist.Color"] = _translate_color(color) props["Hist.Bar"] = _translate_histtype(histtype) props["Bars.Baseline"] = str(bottom) plot_histograms(pd.DataFrame({ "key": [key], "label": [label], "binedges": [np.array(bins)], "binvalues": [np.array(weights)], "underflows": [underflows], "overflows": [overflows], "min": [float(np.min(bins)) if math.isnan(minvalue) else minvalue], "max": [float(np.max(bins)) if math.isnan(maxvalue) else maxvalue] }), props)
def bar(x, height, width, key, label, color, edgecolor): swtplot.assert_is_native_chart() props = {} if color: props["Bar.Color"] = _translate_color(color) plot_bars(pd.DataFrame( { "key": [key], "label": [str(label)], "values": [np.array(height)] } ), props)
def plot(xs, ys, key, label, drawstyle, linestyle, linewidth, color, marker, markersize): swtplot.assert_is_native_chart() props = {} if drawstyle: props["Line.DrawStyle"] = _translate_drawstyle(drawstyle) if linestyle: props["Line.Style"] = _translate_linestyle(linestyle) if linewidth: props["Line.Width"] = str(linewidth) if color: props["Line.Color"] = _translate_color(color) if marker: props["Symbols.Type"] = _translate_marker(marker) if markersize: props["Symbols.Size"] = str(markersize) plot_lines(pd.DataFrame({ "key": [key], "label": [label], "xs": [np.array(xs)], "ys": [np.array(ys)] } ), props)