예제 #1
0
def _rename_edges_helper(internal_node: NodeProto,
                         rename_helper: Callable[[Text], Text],
                         attribute_map: Dict[Text, AttributeProto],
                         prefix: Text) -> NodeProto:
    new_node = NodeProto()
    new_node.CopyFrom(internal_node)
    new_node.ClearField("input")
    new_node.ClearField("output")
    new_node.ClearField("attribute")
    for internal_name in internal_node.input:
        new_node.input.append(rename_helper(internal_name))
    for internal_name in internal_node.output:
        new_node.output.append(rename_helper(internal_name))
    for attr in internal_node.attribute:
        if attr.HasField("ref_attr_name"):
            if attr.ref_attr_name in attribute_map:
                new_attr = AttributeProto()
                new_attr.CopyFrom(
                    attribute_map[attr.ref_attr_name])  # type: ignore
                new_attr.name = attr.name
                new_node.attribute.extend([new_attr])
        else:
            new_attr = AttributeProto()
            new_attr.CopyFrom(attr)
            if attr.type == AttributeProto.GRAPH:
                new_graph = new_attr.g
                sg_rename = {}
                for in_desc in new_graph.input:
                    sg_rename[
                        in_desc.name] = in_desc.name = prefix + in_desc.name
                for out_desc in new_graph.output:
                    sg_rename[
                        out_desc.name] = out_desc.name = prefix + out_desc.name
                for init_desc in new_graph.initializer:
                    sg_rename[init_desc.
                              name] = init_desc.name = prefix + init_desc.name
                for sparse_init_desc in new_graph.sparse_initializer:
                    sg_rename[sparse_init_desc.values.name] = sparse_init_desc.values.name = prefix + \
                        sparse_init_desc.values.name
                for sparse_init_desc in new_graph.sparse_initializer:
                    sg_rename[sparse_init_desc.indices.name] = sparse_init_desc.indices.name = prefix + \
                        sparse_init_desc.indices.name

                def subgraph_rename_helper(name: Text) -> Any:
                    if name in sg_rename:
                        return sg_rename[name]
                    else:
                        return rename_helper(name)

                new_nodes = [
                    _rename_edges_helper(node_desc, subgraph_rename_helper,
                                         attribute_map, prefix)
                    for node_desc in new_graph.node
                ]
                new_graph.ClearField("node")
                new_graph.node.extend(new_nodes)
            new_node.attribute.extend([new_attr])
    return new_node
예제 #2
0
파일: __init__.py 프로젝트: zxh1993/onnx
def function_expand_helper(
    node,  # type: NodeProto
    function_proto,  # type: FunctionProto
    op_prefix  # type:  Text
):  # type:  (...) -> List[NodeProto]
    node_list = []
    io_names_map = dict()
    attribute_map = dict((a.name, a) for a in node.attribute)

    for idx in range(len(function_proto.input)):
        io_names_map[function_proto.input[idx]] = node.input[idx] \
            if idx in range(len(node.input)) else ""

    for idx in range(len(function_proto.output)):
        # Even if the node has been created with optional outputs missing, we
        # can't assume that the function body handles this correctly, such as in
        # the case that output is also an intermediate value.
        # So we only add a name mapping if the output is present. An internal
        # name will be generated if the missing output is used, the same as any
        # other internal tensor.
        if idx in range(len(node.output)) and node.output[idx] != "":
            io_names_map[function_proto.output[idx]] = node.output[idx]

    for internal_node in function_proto.node:
        new_node = NodeProto()
        new_node.CopyFrom(internal_node)
        new_node.ClearField("input")
        new_node.ClearField("output")
        new_node.ClearField("attribute")
        for internal_name in internal_node.input:
            if internal_name in io_names_map:
                new_node.input.append(io_names_map[internal_name])
            else:
                new_node.input.append(op_prefix + internal_name)
        for internal_name in internal_node.output:
            if internal_name in io_names_map:
                new_node.output.append(io_names_map[internal_name])
            else:
                new_node.output.append(op_prefix + internal_name)
        for attr in internal_node.attribute:
            if attr.HasField("ref_attr_name"):
                if attr.ref_attr_name in attribute_map:
                    new_attr = AttributeProto()
                    new_attr.CopyFrom(
                        attribute_map[attr.ref_attr_name])  # type: ignore
                    new_attr.name = attr.name
                    new_node.attribute.extend([new_attr])
            else:
                new_attr = AttributeProto()
                new_attr.CopyFrom(attr)
                new_node.attribute.extend([new_attr])
        node_list.append(new_node)
    return node_list
예제 #3
0
def function_expand_helper(
    node,  # type: NodeProto
    function_proto,  # type: FunctionProto
    op_prefix  # type:  Text
):  # type:  (...) -> List[NodeProto]
    node_list = []
    input_names_map = dict()
    output_names_map = dict()
    attribute_map = node.attribute

    for idx in range(len(function_proto.input)):
        input_names_map[function_proto.input[idx]] = node.input[idx] \
            if idx in range(len(node.input)) else ""

    for idx in range(len(function_proto.output)):
        output_names_map[function_proto.output[idx]] = node.output[idx] \
            if idx in range(len(node.output)) else ""

    for internal_node in function_proto.node:
        new_node = NodeProto()
        new_node.CopyFrom(internal_node)
        new_node.ClearField("input")
        new_node.ClearField("output")
        new_node.ClearField("attribute")
        for internal_name in internal_node.input:
            if internal_name in input_names_map:
                new_node.input.append(input_names_map[internal_name])
            else:
                new_node.input.append(op_prefix + internal_name)
        for internal_name in internal_node.output:
            if internal_name in output_names_map:
                new_node.output.append(output_names_map[internal_name])
            else:
                new_node.output.append(op_prefix + internal_name)
        for attr in internal_node.attribute:
            if attr.HasField("ref_attr_name"):
                if attr.ref_attr_name in attribute_map:
                    new_attr = AttributeProto()
                    new_attr.CopyFrom(
                        attribute_map[attr.ref_attr_name])  # type: ignore
                    new_node.attribute.extend([new_attr])
            else:
                new_attr = AttributeProto()
                new_attr.CopyFrom(attr)
                new_node.attribute.extend([new_attr])
        node_list.append(new_node)
    return node_list