예제 #1
0
    def test_optimizer(self):
        val = np.asarray([[[[1.0, 2.0, 3.0], [1.1, 2.1, 3.1]]]], np.float32)

        nodes = []
        nodes[0:] =\
            [helper.make_node('Constant', [], ['const1'], value=helper.make_tensor(
            name='const0',
            data_type=onnx_proto.TensorProto.FLOAT,
            dims=val.shape,
            vals=val.flatten().astype(float)))]
        nodes[1:] = [helper.make_node('Identity', ['const1'], ['identity1'])]
        nodes[2:] = [helper.make_node('Identity', ['identity1'], ['identity2'])]
        nodes[3:] = [helper.make_node('Max', ['input1', 'identity2'], ['max0'])]
        nodes[4:] = [helper.make_node('Transpose', ['max0'], ['tranpose0'], perm=[0, 2, 3, 1])]
        nodes[5:] = [helper.make_node('Transpose', ['tranpose0'], ['tranpose1'], perm=(0, 3, 1, 2))]
        nodes[6:] = [helper.make_node('Relu', ['tranpose1'], ['output0'], perm=(0, 3, 1, 2))]

        input0 = helper.make_tensor_value_info('input1', onnx_proto.TensorProto.FLOAT, [1, 1, 2, 3])
        output0 = helper.make_tensor_value_info('output0', onnx_proto.TensorProto.FLOAT, [1, 1, 2, 3])

        graph = helper.make_graph(nodes, 'test0', [input0], [output0])
        model = helper.make_model(graph)
        self.assertIsNotNone(model)

        new_nodes = optimize_onnx(nodes, inputs=[input0], outputs=[output0])
        self.assertEqual(len(new_nodes), 3)
        graph = helper.make_graph(new_nodes, 'test0', [input0], [output0])
        model = helper.make_model(graph)
        self.assertIsNotNone(model)
예제 #2
0
    def build_from_onnx(onnx_nodes, nchw_inputs, inputs, outputs):
        view = []
        var_map = {}
        for o_ in onnx_nodes:
            ln = LinkedNode(o_)
            view.append(ln)
            for var_ in o_.output:
                assert var_map.get(var_) is None
                var_map[var_] = ln

        additional_nodes = []
        for n_ in view:
            for var_ in n_.origin.input:
                target = var_map.get(var_)
                if target is None:
                    assert var_ == '' or var_ in inputs
                    target = LinkedNode(out_n=[var_])  # create an empty node as input
                    new_output = var_ + '_nhwc'
                    if var_ in nchw_inputs:
                        nnode = LinkedNode(
                            helper.make_node(
                            'Transpose',
                            [var_],
                            [new_output],
                            perm=[0, 2, 3, 1]))
                        var_map[new_output] = nnode
                        nnode.add_precedence(target, var_)
                        n_.in_redirect(var_, new_output)
                        target = nnode
                        var_ = new_output
                        additional_nodes.append(nnode)

                n_.add_precedence(target, var_)

        for n_ in view:  # add a dummy output node.
            for var_ in n_.origin.output:
                if var_ in outputs:
                    LinkedNode(in_n=[var_]).add_precedence(n_, var_)

        return view + additional_nodes