예제 #1
0
def restrict_column(user, column: models.Column):
    """Set category of the column to the existing set of values.

    Given a workflow and a column, modifies the column so that only the
    values already present are allowed for future updates.

    :param user: User executing this action
    :param column: Column object to restrict
    :return: String with error or None if correct
    """
    # Load the data frame
    data_frame = pandas.load_table(column.workflow.get_data_frame_table_name())

    cat_values = set(data_frame[column.name].dropna())
    if not cat_values:
        raise errors.OnTaskColumnCategoryValueError(
            message=_('The column has no meaningful values'))

    # Set categories
    column.set_categories(list(cat_values))

    # Re-evaluate the operands in the workflow
    column.log(user, models.Log.COLUMN_RESTRICT)
    column.workflow.set_query_builder_ops()
    column.workflow.save()
예제 #2
0
파일: ops.py 프로젝트: ritotombe/ontask_b
def workflow_restrict_column(column: Column) -> Optional[str]:
    """Set category of the column to the existing set of values.

    Given a workflow and a column, modifies the column so that only the
    values already present are allowed for future updates.

    :param column: Column object to restrict

    :return: String with error or None if correct
    """
    # Load the data frame
    data_frame = load_table(column.workflow.get_data_frame_table_name())

    cat_values = set(data_frame[column.name].dropna())
    if not cat_values:
        # Column has no meaningful values. Nothing to do.
        return _('Column has no meaningful values')

    # Set categories
    column.set_categories(list(cat_values))
    column.save()

    # Re-evaluate the operands in the workflow
    column.workflow.set_query_builder_ops()
    column.workflow.save()

    # Correct execution
    return None
예제 #3
0
파일: ops.py 프로젝트: ritotombe/ontask_b
def do_clone_column_only(
    column: Column,
    new_workflow: Optional[Workflow] = None,
    new_name: Optional[str] = None,
) -> Column:
    """Clone a column.

    :param column: Object to clone.

    :param new_workflow: Optional new worklow object to link to.

    :param new_name: Optional new name to use.

    :result: New object.
    """
    if new_name is None:
        new_name = column.name
    if new_workflow is None:
        new_workflow = column.workflow

    new_column = Column(
        name=new_name,
        description_text=column.description_text,
        workflow=new_workflow,
        data_type=column.data_type,
        is_key=column.is_key,
        position=column.position,
        in_viz=column.in_viz,
        categories=copy.deepcopy(column.categories),
        active_from=column.active_from,
        active_to=column.active_to,
    )
    new_column.save()
    return new_column
예제 #4
0
def add_random_column(
    user,
    workflow: models.Workflow,
    column: models.Column,
    data_frame: pd.DataFrame,
):
    """Add the formula column to the workflow.

    :param user: User making the request
    :param workflow: Workflow to add the column
    :param column: Column being added
    :param data_frame: Data frame of the current workflow
    :return: Column is added to the workflow
    """
    # Empty new column
    new_column = [None] * workflow.nrows
    categories = column.get_categories()
    # Create the random partitions
    partitions = _partition(
        [idx for idx in range(workflow.nrows)],
        len(categories))

    # Assign values to partitions
    for idx, indexes in enumerate(partitions):
        for col_idx in indexes:
            new_column[col_idx] = categories[idx]

    # Assign the new column to the data frame
    data_frame[column.name] = pd.Series(
        new_column,
        dtype=_ontask_type_to_pd_type[column.data_type],
        index=data_frame.index)

    if column.data_type == 'datetime':
        data_frame[column.name] = data_frame[column.name].dt.tz_localize(
            settings.TIME_ZONE)

    # Update the positions of the appropriate columns
    workflow.reposition_columns(workflow.ncols + 1, column.position)
    workflow.refresh_from_db()

    # Store the df to DB
    try:
        pandas.store_dataframe(data_frame, workflow)
    except Exception as exc:
        raise services.OnTaskWorkflowStoreError(
            message=_('Unable to add the column: {0}').format(str(exc)),
            to_delete=[column])

    workflow.ncols = workflow.columns.count()
    workflow.save()

    # Log the event
    column.log(user, models.Log.COLUMN_ADD_RANDOM)
예제 #5
0
def update_column(
    user,
    workflow: models.Workflow,
    column: models.Column,
    old_name: str,
    old_position: int,
    action_column_item: Optional[models.Action] = None,
    action_column_event: Optional[str] = None,
):
    """Update information in a column.

    :param user: User performing the operation
    :param workflow: Workflow being processed
    :param column: Column being modified
    :param old_name: Old name to detect renaming
    :param old_position: old position to detect repositioning
    :param action_column_item: Action/column item in case the action is stored
    in that table.
    :param action_column_event: Event to record the operation on the
    action/column
    :return: Nothing. Side effect in the workflow.
    """
    # If there is a new name, rename the data frame columns
    if old_name != column.name:
        sql.db_rename_column(
            workflow.get_data_frame_table_name(),
            old_name,
            column.name)
        pandas.rename_df_column(workflow, old_name, column.name)

    if old_position != column.position:
        # Update the positions of the appropriate columns
        workflow.reposition_columns(old_position, column.position)

    column.save()

    # Go back to the DB because the prefetch columns are not valid
    # any more
    workflow = models.Workflow.objects.prefetch_related('columns').get(
        id=workflow.id,
    )

    # Changes in column require rebuilding the query_builder_ops
    workflow.set_query_builder_ops()

    # Save the workflow
    workflow.save()

    if action_column_item:
        action_column_item.log(user, action_column_event)

    # Log the event
    column.log(user, models.Log.COLUMN_EDIT)
예제 #6
0
    def clean(self):
        """Validate the initial value."""
        form_data = super().clean()

        # Try to convert the initial value ot the right type
        initial_value = form_data['initial_value']
        if initial_value:
            # See if the given value is allowed for the column data type
            try:
                self.initial_valid_value = Column.validate_column_value(
                    form_data['data_type'],
                    initial_value,
                )
            except ValueError:
                self.add_error(
                    'initial_value',
                    _('Incorrect initial value'),
                )

            categories = self.instance.get_categories()
            if categories and self.initial_valid_value not in categories:
                self.add_error(
                    'initial_value',
                    _('This value is not in the list of allowed values'),
                )

        return form_data
예제 #7
0
def add_formula_column(
    user,
    workflow: models.Workflow,
    column: models.Column,
    operation: str,
    selected_columns: List[models.Column],
):
    """Add the formula column to the workflow.

    :param user: User making the request
    :param workflow: Workflow to add the column
    :param column: Column being added
    :param operation: string denoting the operation
    :param selected_columns: List of columns selected for the operation.
    :return: Column is added to the workflow
    """
    # Save the column object attached to the form and add additional fields
    column.workflow = workflow
    column.is_key = False

    # Save the instance
    column.save()

    # Update the data frame
    df = pandas.load_table(workflow.get_data_frame_table_name())

    # Add the column with the appropriate computation
    cnames = [col.name for col in selected_columns]
    df[column.name] = _op_distrib[operation](df[cnames])

    # Populate the column type
    column.data_type = pandas.datatype_names.get(
        df[column.name].dtype.name)

    # Update the positions of the appropriate columns
    workflow.reposition_columns(workflow.ncols + 1, column.position)
    column.save()
    workflow.refresh_from_db()

    # Store the df to DB
    try:
        pandas.store_dataframe(df, workflow)
    except Exception as exc:
        raise services.OnTaskWorkflowAddColumn(
            message=_('Unable to add column: {0}').format(str(exc)),
            to_delete=[column])

    workflow.ncols = workflow.columns.count()
    workflow.save()
    column.log(user, models.Log.COLUMN_ADD_FORMULA)
예제 #8
0
def add_column_to_workflow(
    user,
    workflow: models.Workflow,
    column: models.Column,
    column_initial_value: Any,
    action_column_event: Optional[str] = None,
    action: Optional[models.Action] = None,
):
    """Add a new column to the workflow.

    :param user: User executing the operation
    :param workflow: Used workflow
    :param column: Column to insert
    :param column_initial_value: Initial value for the column
    :param action_column_event: Event to record if the action/column needs to
    be stored
    :param action: If the column is a question, this is the action in which it
    is being used.
    :return: Nothing. Column added to Wflow and DB
    """
    # Catch the special case of integer type and no initial value. Pandas
    # encodes it as NaN but a cycle through the database transforms it into
    # a string. To avoid this case, integer + empty value => double
    if column.data_type == 'integer' and column_initial_value is None:
        column.data_type = 'double'

    # Fill in the remaining fields in the column
    column.workflow = workflow
    column.is_key = False

    # Update the positions of the appropriate columns
    workflow.reposition_columns(workflow.ncols + 1, column.position)

    # Save column, refresh workflow, and increase number of columns
    column.save()
    workflow.refresh_from_db()
    workflow.ncols += 1
    workflow.set_query_builder_ops()
    workflow.save()

    # Add the new column to the DB
    try:
        sql.add_column_to_db(
            workflow.get_data_frame_table_name(),
            column.name,
            column.data_type,
            initial=column_initial_value)
    except Exception as exc:
        raise services.OnTaskWorkflowAddColumn(
            message=_('Unable to add element: {0}').format(str(exc)),
            to_delete=[column])

    if action_column_event:
        acc, __ = models.ActionColumnConditionTuple.objects.get_or_create(
            action=action,
            column=column,
            condition=None)
        acc.log(user, action_column_event)
    column.log(user, models.Log.COLUMN_ADD)
예제 #9
0
def _create_track_column(action: Action) -> str:
    """Create an additional column for email tracking.

    :param action: Action to consider
    :return: column name
    """
    # Make sure the column name does not collide with an existing one
    idx = 0  # Suffix to rename
    cnames = [col.name for col in action.workflow.columns.all()]
    while True:
        idx += 1
        track_col_name = 'EmailRead_{0}'.format(idx)
        if track_col_name not in cnames:
            break

    # Add the column if needed (before the mass email to avoid overload
    # Create the new column and store
    column = Column(
        name=track_col_name,
        description_text='Emails sent with action {0} on {1}'.format(
            action.name,
            simplify_datetime_str(
                datetime.datetime.now(pytz.timezone(settings.TIME_ZONE))),
        ),
        workflow=action.workflow,
        data_type='integer',
        is_key=False,
        position=action.workflow.ncols + 1,
    )
    column.save()

    # Increase the number of columns in the workflow
    action.workflow.ncols += 1
    action.workflow.save()

    # Add the column to the DB table
    add_column_to_db(action.workflow.get_data_frame_table_name(),
                     track_col_name, 'integer', 0)

    return track_col_name
예제 #10
0
    def create(self, validated_data, **kwargs):
        """Create a new column."""
        # Preliminary checks
        data_type = validated_data.get('data_type')
        if (data_type is None
                or data_type not in list(pandas_datatype_names.values())):
            # The data type is not legal
            raise Exception(_('Incorrect data type {0}.').format(data_type))

        column_obj = None
        try:
            # Create the object, but point to the given workflow
            column_obj = Column(
                name=validated_data['name'],
                description_text=validated_data.get('description_text', ''),
                workflow=self.context['workflow'],
                data_type=data_type,
                is_key=validated_data.get('is_key', False),
                position=validated_data.get('position', 0),
                in_viz=validated_data.get('in_viz', True),
                active_from=validated_data.get('active_from'),
                active_to=validated_data.get('active_to'),
            )

            # Set the categories if they exists
            column_obj.set_categories(validated_data.get('categories', []),
                                      True)

            if (column_obj.active_from and column_obj.active_to
                    and column_obj.active_from > column_obj.active_to):
                raise Exception(
                    _('Incorrect date/times in the active window for ' +
                      'column {0}').format(validated_data['name']))

            # All tests passed, proceed to save the object.
            column_obj.save()
        except Exception as exc:
            if column_obj:
                column_obj.delete()
            raise exc

        return column_obj
예제 #11
0
    def clean(self):
        """Check that the name is legal and the categories have right value."""
        form_data = super().clean()

        # Load the data frame from the DB for various checks and leave it in
        # the form for future use
        self.data_frame = load_table(
            self.workflow.get_data_frame_table_name())

        # Column name must be a legal variable name
        if 'name' in self.changed_data:
            # Name is legal
            msg = is_legal_name(form_data['name'])
            if msg:
                self.add_error('name', msg)
                return form_data

            # Check that the name is not present already
            if next(
                (col for col in self.workflow.columns.all()
                 if col.id != self.instance.id
                    and col.name == form_data['name']),
                None,
            ):
                # New column name collides with existing one
                self.add_error(
                    'name',
                    _('There is a column already with this name'))
                return form_data

        # Categories must be valid types
        if 'raw_categories' in self.changed_data:
            if form_data['raw_categories']:
                # Condition 1: Values must be valid for the type of the column
                if self.allow_interval_as_initial and re.search(
                    INTERVAL_PATTERN,
                    form_data['raw_categories']
                ):
                    match = re.search(
                        INTERVAL_PATTERN,
                        form_data['raw_categories'])
                    from_val = int(match.group('from'))
                    to_val = int(match.group('to'))
                    if from_val > to_val:
                        tmp = from_val
                        from_val = to_val
                        to_val = tmp
                    category_values = [
                        str(val) for val in range(from_val, to_val + 1)]
                else:
                    category_values = [
                        cat.strip()
                        for cat in form_data['raw_categories'].split(',')]
                try:
                    valid_values = Column.validate_column_values(
                        form_data['data_type'],
                        category_values)
                except ValueError:
                    self.add_error(
                        'raw_categories',
                        _('Incorrect list of values'),
                    )
                    return form_data

                # Condition 2: The values in the dataframe column must be in
                # these categories (only if the column is being edited, though
                if self.instance.name and not all(
                    vval in valid_values
                    for vval in self.data_frame[self.instance.name]
                    if vval and not pd.isnull(vval)
                ):
                    self.add_error(
                        'raw_categories',
                        _(
                            'The values in the column are not compatible '
                            + ' with these ones.'))
                    return form_data
            else:
                valid_values = []

            self.instance.set_categories(valid_values)

        # Check the datetimes. One needs to be after the other
        a_from = self.cleaned_data.get('active_from')
        a_to = self.cleaned_data.get('active_to')
        if a_from and a_to and a_from >= a_to:
            self.add_error('active_from', _('Incorrect date/time window'))
            self.add_error('active_to', _('Incorrect date/time window'))

        # Check and force a correct column index
        ncols = self.workflow.columns.count()
        if form_data['position'] < 1 or form_data['position'] > ncols:
            form_data['position'] = ncols + 1

        return form_data
예제 #12
0
def delete_column(
    user: get_user_model(),
    workflow: models.Workflow,
    column: models.Column,
    cond_to_delete: Optional[List[models.Condition]] = None,
):
    """Remove column from ontask.workflow.

    Given a workflow and a column, removes it from the workflow (and the
    corresponding data frame

    :param user: User performing the operation
    :param workflow: Workflow object
    :param column: Column object to delete
    :param cond_to_delete: List of conditions to delete after removing the
    column
    :return: Nothing. Effect reflected in the database
    """
    column.log(user, models.Log.COLUMN_DELETE)

    # Drop the column from the DB table storing the data frame
    sql.df_drop_column(workflow.get_data_frame_table_name(), column.name)

    # Reposition the columns above the one being deleted
    workflow.reposition_columns(column.position, workflow.ncols + 1)

    # Delete the column
    column.delete()

    # Update the information in the workflow
    workflow.ncols = workflow.ncols - 1
    workflow.save()

    if not cond_to_delete:
        # The conditions to delete are not given, so calculate them
        # Get the conditions/actions attached to this workflow
        cond_to_delete = [
            cond for cond in models.Condition.objects.filter(
                action__workflow=workflow) if column in cond.columns.all()
        ]

    # If a column disappears, the conditions that contain that variable
    # are removed
    actions_without_filters = []
    for condition in cond_to_delete:
        if condition.is_filter:
            actions_without_filters.append(condition.action)

        # Formula has the name of the deleted column. Delete it
        condition.delete()

    # Traverse the actions for which the filter has been deleted and reassess
    #  all their conditions
    # TODO: Explore how to do this asynchronously (or lazy)
    for act in actions_without_filters:
        act.update_n_rows_selected()

    # If a column disappears, the views that contain only that column need to
    # disappear as well as they are no longer relevant.
    for view in workflow.views.all():
        if view.columns.count() == 0:
            view.delete()
예제 #13
0
def add_random_column(
    user,
    workflow: models.Workflow,
    column: models.Column,
    data_frame: pd.DataFrame,
):
    """Add the formula column to the workflow.

    :param user: User making the request
    :param workflow: Workflow to add the column
    :param column: Column being added
    :param data_frame: Data frame of the current workflow
    :return: Column is added to the workflow
    """
    # Save the column object attached to the form and add additional fields
    column.workflow = workflow
    column.is_key = False

    # Detect the case of a single integer as initial value so that it is
    # expanded
    try:
        int_value = int(column.categories[0])
        if int_value <= 1:
            raise services.OnTaskWorkflowIntegerLowerThanOne(
                field_name='values',
                message=_('The integer value has to be larger than 1'))
        column.set_categories([idx + 1 for idx in range(int_value)])
    except (ValueError, TypeError, IndexError):
        pass

    column.save()

    # Empty new column
    new_column = [None] * workflow.nrows
    # Create the random partitions
    partitions = _partition([idx for idx in range(workflow.nrows)],
                            len(column.categories))

    # Assign values to partitions
    for idx, indexes in enumerate(partitions):
        for col_idx in indexes:
            new_column[col_idx] = column.categories[idx]

    # Assign the new column to the data frame
    data_frame[column.name] = new_column

    # Update the positions of the appropriate columns
    workflow.reposition_columns(workflow.ncols + 1, column.position)
    workflow.refresh_from_db()

    # Store the df to DB
    try:
        pandas.store_dataframe(data_frame, workflow)
    except Exception as exc:
        raise services.OnTaskWorkflowStoreError(
            message=_('Unable to add the column: {0}').format(str(exc)),
            to_delete=[column])

    workflow.ncols = workflow.columns.count()
    workflow.save()

    # Log the event
    column.log(user, models.Log.COLUMN_ADD_RANDOM)