def run_variant(experiment, variant): lu.run_experiment( experiment, variant=variant, # run_id=variant["run_id"], mode=variant["mode"], exp_prefix=variant["exp_prefix"], exp_id=variant["exp_id"], instance_type=variant["instance_type"], use_gpu=variant["use_gpu"], snapshot_mode=variant["snapshot_mode"], snapshot_gap=variant["snapshot_gap"], base_log_dir=variant["base_log_dir"], num_exps_per_instance=variant.get("num_exps_per_instance", 1), prepend_date_to_exp_prefix=False, # spot_price=variant["spot_price"], region=variant.get("region", "us-east-1"), time_in_mins=variant.get("time_in_mins", 0), ssh_host=variant.get("ssh_host", None), )
# 5. Execute bash command: CUDA_VISIBLE_DEVICES=? python realworld_analyzer.py -da [cloth,poke,solid] if __name__ == "__main__": parser = ArgumentParser() parser.add_argument('-da', '--dataset', type=str, default=None, required=True) # stack_o2p2_60k, pickplace_1env_1k parser.add_argument('-m', '--mode', type=str, default='here_no_doodad') args = parser.parse_args() # models: list of dictionaries containing the information of the models to be loaded/run # Images will be of form: T images wide, 1st row is true images, then next rows are dictated by models, where # each model takes K+1 rows, where the 1st row is the combined reconstruction and the next K are the subimages variant = dict( models=dataset_to_models[args.dataset], T=8, # Set this! dataset=args.dataset) # Relevant options: 'here_no_doodad', 'local_docker', 'ec2' run_experiment( create_images_from_dataset, # Set this! get_mse_from_dataset, create_images_from_dataset, analyze_mse, create_mse_graphs exp_prefix='images-{}'.format(args.dataset), mode=args.mode, variant=variant, use_gpu=True, # Turn on if you have a GPU seed=None, region='us-west-2')
parser.add_argument('-de', '--debug', type=int, default=1) parser.add_argument('-m', '--mode', type=str, default='here_no_doodad') args = parser.parse_args() if args.variant == 'stack': variant = stack_variant elif args.variant == 'pickplace': variant = pickplace_variant elif args.variant == 'cloth': variant = cloth_variant else: raise Exception("Exp variant not found") variant['debug'] = args.debug # Relevant options: 'here_no_doodad', 'local_docker', 'ec2' run_experiment( train_vae, exp_prefix='{}'.format(args.variant), mode=args.mode, variant=variant, use_gpu=True, # Turn on if you have a GPU seed=None, region='us-west-2' # only used if mode is ec2 )
op3_args=params_to_info[args.model_file]["op3_args"], cem_args=dict( cem_steps=5, num_samples=1000, time_horizon=1, ), cost_args=dict( core_type='final_recon', # "subimage", "final_recon", "latent" # latent_or_subimage = 'subimage', compare_func='mse', post_process='raw', aggregate='min', ), filter_goal_image=False, structure=s, debug=args.debug, model_file=args.model_file, ) n_seeds = 1 exp_prefix = 'iodine-mpc-stage1-k7-v2-unfactorized-fixed' run_experiment( main, exp_prefix=exp_prefix, mode=args.mode, variant=variant, use_gpu=True, # Turn on if you have a GPU region='us-west-2', )
cem_args=dict( cem_steps=5, num_samples=200, time_horizon=num_goal_objects, action_type= 4, # Should be [None, 4], This controls if it is object oriented (when set to 4) or raw env action space (None) ), num_actions_to_take=num_goal_objects * 2, num_action_to_take_per_plan=num_goal_objects, cost_args=dict( core_type='final_recon', # "subimage", "final_recon", "latent" compare_func='mse', # mse, psuedo_intersect post_process='raw', aggregate='sum', ), goal_start_end_range=[0, 100], debug=args.debug, model_file=args.model_file, number_goal_objects=num_goal_objects, ) run_experiment( main, exp_prefix='iodine-mpc-stage3-n{}-{}-v2'.format( variant["number_goal_objects"], args.model_file), mode=args.mode, variant=variant, use_gpu=True, # Turn on if you have a GPU region='us-west-2', )