def task(): fig = mtp.new_figure((6,4)) ax = fig.add_subplot(1,1,1) x = [0, self.model.days, self.model.days, self.model.days*1.1] y = [1,1,0,0] ax.plot(x, y) ax.set(xlabel=_text["days"], ylabel=_text["int"], xlim=[0, self.model.days*1.1], ylim=[-0.1,1.1]) return fig
def task(): fig = mtp.new_figure((6,4)) ax = fig.add_subplot(1,1,1) x = np.linspace(0, self.model.scale*5, 100) kernel = self.model.make_kernel() ax.plot(x, kernel(x)) ax.set(xlabel=_text["days"], ylabel=_text["int"], xlim=[0, self.model.scale*5], ylim=[0,1]) return fig
def task(): fig = mtp.new_figure((6,6)) ax = fig.add_subplot(1,1,1) xcs, ycs = coords self.sample_kernel(kernel_provider, [xcs, ycs], ax) ax.set_aspect(1) fig.set_tight_layout("tight") return fig
def _plot_weight(weight, bandwidth): fig = mtp.new_figure((5, 5)) ax = fig.add_subplot(1, 1, 1) xc = np.linspace(-bandwidth, bandwidth, 50) yc = weight(xc, [0] * len(xc)) ax.plot(xc, yc, color="black") ax.set(xlabel="Distance in metres") ax.set(ylabel="Relative risk") fig.set_tight_layout(True) return fig
def make_fig(): fig = mtp.new_figure((20, 20)) ax = fig.add_subplot(1, 1, 1) prediction = self.model.current_prediction if level == -1: plot_risk(prediction, ax, adjust_task) else: plot_coverage(prediction, level, ax, adjust_task) ax.set_aspect(1) fig.set_tight_layout(True) return fig
def task(): fig = mtp.new_figure(size=(8, 8)) ax = fig.add_subplot(1, 1, 1) self._try_add_patch(ax, geo) ax.scatter(coords[0], coords[1], marker="+", color="black", alpha=0.5) ax.set_aspect(1) fig.set_tight_layout("tight") return fig
def task(): xmin, ymin, xmax, ymax = geo.bounds xdelta = (xmax - xmin) / 100 * 2 ydelta = (ymax - ymin) / 100 * 2 fig = mtp.new_figure(size=(8, 8)) ax = fig.add_subplot(1, 1, 1) self._try_add_patch(ax, geo) ax.set(xlim=[xmin - xdelta, xmax + xdelta], ylim=[ymin - ydelta, ymax + ydelta]) ax.set_aspect(1) fig.set_tight_layout("tight") return fig
def _plot_task(self): fig = mtp.new_figure((5,5)) ax = fig.add_subplot(1,1,1) dist_obj = self._model.grid_distance() xcs = np.array([-3, -2, -1, 0, 1, 2, 3, 4]) ycs = np.array([-3, -2, -1, 0, 1, 2, 3, 4]) dists = np.empty((len(ycs)-1,len(xcs)-1)) for ix, x in enumerate(xcs[:-1]): for iy, y in enumerate(ycs[:-1]): dists[iy][ix] = dist_obj(0,0,x,y) pcm = ax.pcolormesh(xcs, ycs, dists, cmap="rainbow") fig.colorbar(pcm) ax.set(xlabel=_text["dgx"], ylabel=_text["dgy"]) fig.set_tight_layout(True) return fig
def _plot_task(self): fig = mtp.new_figure((5,5)) ax = fig.add_subplot(1,1,1) weight = self._model.weight() xcs = np.arange(0, self._model.space_bandwidth + 1) ycs = np.arange(0, self._model.time_bandwidth + 1) dists = np.empty((len(ycs)-1,len(xcs)-1)) for ix, d_space in enumerate(xcs[:-1]): for iy, d_time in enumerate(ycs[:-1]): dists[iy][ix] = weight(d_time,d_space) num, unit = ProHotspotView.timeunit(self._parent_model.time_window_length) pcm = ax.pcolormesh(xcs, ycs * num, dists, cmap="rainbow") fig.colorbar(pcm) yl = _text["time_bin_choices"][unit] ax.set(xlabel=_text["kgx"], ylabel=yl) fig.set_tight_layout(True) return fig
def _plot_task(self): fig = mtp.new_figure((5, 5)) ax = fig.add_subplot(1, 1, 1) weight = self._model.weight() xcs = np.linspace(0, self._model.space_bandwidth, 100) ycs = np.linspace(0, self._model.time_bandwidth, 100) dists = np.empty((len(ycs) - 1, len(xcs) - 1)) for ix, d_space in enumerate(xcs[:-1]): for iy, d_time in enumerate(ycs[:-1]): dists[iy][ix] = weight(d_time, d_space) xscale = self._parent_model.space_length yscale = self._parent_model.time_window_length / datetime.timedelta( hours=1) pcm = ax.pcolormesh(xcs * xscale, ycs * yscale, dists, cmap="rainbow") fig.colorbar(pcm) ax.set(xlabel=_text["kgx"], ylabel=_text["kgy"]) fig.set_tight_layout(True) return fig
def _plot_task(self): fig = mtp.new_figure((5, 5)) ax = fig.add_subplot(1, 1, 1) dist_obj = self._model.grid_distance() bandwidth = self._model.model.space_length xcs = np.linspace(-5, 5, 100) ycs = np.linspace(-5, 5, 100) dists = np.empty((len(ycs) - 1, len(xcs) - 1)) for ix, x in enumerate(xcs[:-1]): for iy, y in enumerate(ycs[:-1]): dists[iy][ix] = dist_obj(0, 0, x, y) pcm = ax.pcolormesh(xcs * bandwidth, ycs * bandwidth, dists, cmap="rainbow") fig.colorbar(pcm) ax.set(xlabel=_text["dgx"], ylabel=_text["dgy"]) fig.set_tight_layout(True) return fig
def make_fig(): xmin, xmax = _np.min(coords[0]), _np.max(coords[0]) xd = (xmax - xmin) / 100 * 3 xmin, xmax = xmin - xd, xmax + xd ymin, ymax = _np.min(coords[1]), _np.max(coords[1]) yd = (ymax - ymin) / 100 * 3 ymin, ymax = ymin - yd, ymax + yd width = xmax - xmin height = ymax - ymin if width == 0 or height == 0: size = (10, 10) else: height = height / width * 10.0 width = 10.0 if height > 10.0: width = 100.0 / height height = 10.0 size = (width, height) fig = mtp.new_figure(size) ax = fig.add_subplot(1, 1, 1) ax.scatter(coords[0], coords[1], marker="x", color="black", alpha=0.5) lc = open_cp.plot.lines_from_regular_grid( self._controller.get_grid()) ax.add_collection( mtp.matplotlib.collections.LineCollection(lc, color="black", linewidth=0.5)) ax.set(xlim=[xmin, xmax], ylim=[ymin, ymax]) ax.set_aspect(1.0) fig.set_tight_layout(True) return fig