def __init__(self, env, observations, latent, estimate_q=False, vf_latent=None, sess=None, **tensors): """ Parameters: ---------- env RL environment observations tensorflow placeholder in which the observations will be fed latent latent state from which policy distribution parameters should be inferred vf_latent latent state from which value function should be inferred (if None, then latent is used) sess tensorflow session to run calculations in (if None, default session is used) **tensors tensorflow tensors for additional attributes such as state or mask """ self.X = observations self.state = tf.constant([]) self.initial_state = None self.__dict__.update(tensors) vf_latent = vf_latent if vf_latent is not None else latent vf_latent = tf.layers.flatten(vf_latent) latent = tf.layers.flatten(latent) # Based on the action space, will select what probability distribution type self.pdtype = make_pdtype(env.action_space) self.pd, self.pi = self.pdtype.pdfromlatent(latent, init_scale=0.01) # Take an action self.action = self.pd.sample() # Calculate the neg log of our probability self.neglogp = self.pd.neglogp(self.action) self.sess = sess or tf.get_default_session() if estimate_q: assert isinstance(env.action_space, gym.spaces.Discrete) self.q = fc(vf_latent, 'q', env.action_space.n) self.vf = self.q else: self.vf = fc(vf_latent, 'vf', 1) self.vf = self.vf[:, 0]
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0): pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias) return self.pdfromflat(pdparam), pdparam
def nature_cnn(unscaled_images, **conv_kwargs): """ CNN from Nature paper. """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ( conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ( conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ( conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0): mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias) logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) return self.pdfromflat(pdparam), mean
def network_fn(X): h = tf.layers.flatten(X) for i in range(num_layers): h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2)) if layer_norm: h = tf.contrib.layers.layer_norm(h, center=True, scale=True) h = activation(h) return h
def network_fn(X): h = tf.cast(X, tf.float32) / 255. activ = tf.nn.relu h = activ( conv(h, 'c1', nf=8, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h = activ( conv(h, 'c2', nf=16, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h = conv_to_fc(h) h = activ(fc(h, 'fc1', nh=128, init_scale=np.sqrt(2))) return h