class async_mqMFES(async_mqHyperband): """ The implementation of Asynchronous MFES (combine ASHA and MFES) """ def __init__(self, objective_func, config_space: ConfigurationSpace, R, eta=3, skip_outer_loop=0, rand_prob=0.3, use_bohb=False, init_weight=None, update_enable=True, weight_method='rank_loss_p_norm', fusion_method='idp', power_num=3, random_state=1, method_id='mqAsyncMFES', restart_needed=True, time_limit_per_trial=600, runtime_limit=None, seed=1, ip='', port=13579, authkey=b'abc'): super().__init__(objective_func, config_space, R, eta=eta, skip_outer_loop=skip_outer_loop, random_state=random_state, method_id=method_id, restart_needed=restart_needed, time_limit_per_trial=time_limit_per_trial, runtime_limit=runtime_limit, ip=ip, port=port, authkey=authkey) self.seed = seed self.last_n_iteration = None self.use_bohb_strategy = use_bohb self.update_enable = update_enable self.fusion_method = fusion_method # Parameter for weight method `rank_loss_p_norm`. self.power_num = power_num # Specify the weight learning method. self.weight_method = weight_method self.weight_update_id = 0 self.weight_changed_cnt = 0 if init_weight is None: init_weight = [1. / self.s_max] * self.s_max + [0.] assert len(init_weight) == (self.s_max + 1) self.logger.info("Initialize weight to %s" % init_weight[:self.s_max + 1]) types, bounds = get_types(config_space) if not self.use_bohb_strategy: self.surrogate = RandomForestEnsemble(types, bounds, self.s_max, self.eta, init_weight, self.fusion_method) else: self.surrogate = RandomForestWithInstances(types, bounds, seed=self.seed) self.acquisition_function = EI(model=self.surrogate) self.iterate_id = 0 self.iterate_r = list() self.hist_weights = list() # Saving evaluation statistics in Hyperband. self.target_x = dict() self.target_y = dict() for index, item in enumerate( np.logspace(0, self.s_max, self.s_max + 1, base=self.eta)): r = int(item) self.iterate_r.append(r) self.target_x[r] = list() self.target_y[r] = list() # BO optimizer settings. self.history_container = HistoryContainer(task_id=self.method_name) self.sls_max_steps = None self.n_sls_iterations = 5 self.sls_n_steps_plateau_walk = 10 self.rng = np.random.RandomState(seed=self.seed) self.acq_optimizer = InterleavedLocalAndRandomSearch( acquisition_function=self.acquisition_function, config_space=self.config_space, rng=self.rng, max_steps=self.sls_max_steps, n_steps_plateau_walk=self.sls_n_steps_plateau_walk, n_sls_iterations=self.n_sls_iterations, rand_prob=0.0, ) self.random_configuration_chooser = ChooserProb(prob=rand_prob, rng=self.rng) self.random_check_idx = 0 def update_observation(self, config, perf, n_iteration): rung_id = self.get_rung_id(self.bracket, n_iteration) updated = False for job in self.bracket[rung_id]['jobs']: _job_status, _config, _perf, _extra_conf = job if _config == config: assert _job_status == RUNNING job[0] = COMPLETED job[2] = perf updated = True break assert updated # print('=== bracket after update_observation:', self.get_bracket_status(self.bracket)) configs_running = list() for _config in self.bracket[rung_id]['configs']: if _config not in self.target_x[n_iteration]: configs_running.append(_config) value_imputed = np.median(self.target_y[n_iteration]) n_iteration = int(n_iteration) self.target_x[n_iteration].append(config) self.target_y[n_iteration].append(perf) if n_iteration == self.R: self.incumbent_configs.append(config) self.incumbent_perfs.append(perf) # Update history container. self.history_container.add(config, perf) # Refit the ensemble surrogate model. configs_train = self.target_x[n_iteration] + configs_running results_train = self.target_y[n_iteration] + [value_imputed ] * len(configs_running) results_train = np.array(std_normalization(results_train), dtype=np.float64) if not self.use_bohb_strategy: self.surrogate.train( convert_configurations_to_array(configs_train), results_train, r=n_iteration) else: if n_iteration == self.R: self.surrogate.train( convert_configurations_to_array(configs_train), results_train) def choose_next(self): """ sample a config according to MFES. give iterations according to Hyperband strategy. """ next_config = None next_n_iteration = self.get_next_n_iteration() next_rung_id = self.get_rung_id(self.bracket, next_n_iteration) # Update weight when the inner loop of hyperband is finished if self.last_n_iteration != next_n_iteration and not self.use_bohb_strategy: if self.update_enable and self.weight_update_id > self.s_max: self.update_weight() self.weight_update_id += 1 self.last_n_iteration = next_n_iteration # sample config excluded_configs = self.bracket[next_rung_id]['configs'] if len(self.target_y[self.iterate_r[-1]]) == 0: next_config = sample_configuration( self.config_space, excluded_configs=excluded_configs) else: # Like BOHB, sample a fixed percentage of random configurations. self.random_check_idx += 1 if self.random_configuration_chooser.check(self.random_check_idx): next_config = sample_configuration( self.config_space, excluded_configs=excluded_configs) else: acq_configs = self.get_bo_candidates() for config in acq_configs: if config not in self.bracket[next_rung_id]['configs']: next_config = config break if next_config is None: self.logger.warning( 'Cannot get a non duplicate configuration from bo candidates. ' 'Sample a random one.') next_config = sample_configuration( self.config_space, excluded_configs=excluded_configs) next_extra_conf = {} return next_config, next_n_iteration, next_extra_conf def get_bo_candidates(self): std_incumbent_value = np.min( std_normalization(self.target_y[self.iterate_r[-1]])) # Update surrogate model in acquisition function. self.acquisition_function.update(model=self.surrogate, eta=std_incumbent_value, num_data=len(self.incumbent_configs)) challengers = self.acq_optimizer.maximize( runhistory=self.history_container, num_points=5000, ) return challengers.challengers @staticmethod def calculate_preserving_order_num(y_pred, y_true): array_size = len(y_pred) assert len(y_true) == array_size total_pair_num, order_preserving_num = 0, 0 for idx in range(array_size): for inner_idx in range(idx + 1, array_size): if bool(y_true[idx] > y_true[inner_idx]) == bool( y_pred[idx] > y_pred[inner_idx]): order_preserving_num += 1 total_pair_num += 1 return order_preserving_num, total_pair_num def update_weight(self): start_time = time.time() max_r = self.iterate_r[-1] incumbent_configs = self.target_x[max_r] test_x = convert_configurations_to_array(incumbent_configs) test_y = np.array(self.target_y[max_r], dtype=np.float64) r_list = self.surrogate.surrogate_r K = len(r_list) if len(test_y) >= 3: # Get previous weights if self.weight_method == 'rank_loss_p_norm': preserving_order_p = list() preserving_order_nums = list() for i, r in enumerate(r_list): fold_num = 5 if i != K - 1: mean, var = self.surrogate.surrogate_container[ r].predict(test_x) tmp_y = np.reshape(mean, -1) preorder_num, pair_num = self.calculate_preserving_order_num( tmp_y, test_y) preserving_order_p.append(preorder_num / pair_num) preserving_order_nums.append(preorder_num) else: if len(test_y) < 2 * fold_num: preserving_order_p.append(0) else: # 5-fold cross validation. kfold = KFold(n_splits=fold_num) cv_pred = np.array([0] * len(test_y)) for train_idx, valid_idx in kfold.split(test_x): train_configs, train_y = test_x[ train_idx], test_y[train_idx] valid_configs, valid_y = test_x[ valid_idx], test_y[valid_idx] types, bounds = get_types(self.config_space) _surrogate = RandomForestWithInstances( types=types, bounds=bounds) _surrogate.train(train_configs, train_y) pred, _ = _surrogate.predict(valid_configs) cv_pred[valid_idx] = pred.reshape(-1) preorder_num, pair_num = self.calculate_preserving_order_num( cv_pred, test_y) preserving_order_p.append(preorder_num / pair_num) preserving_order_nums.append(preorder_num) trans_order_weight = np.array(preserving_order_p) power_sum = np.sum(np.power(trans_order_weight, self.power_num)) new_weights = np.power(trans_order_weight, self.power_num) / power_sum elif self.weight_method == 'rank_loss_prob': # For basic surrogate i=1:K-1. mean_list, var_list = list(), list() for i, r in enumerate(r_list[:-1]): mean, var = self.surrogate.surrogate_container[r].predict( test_x) mean_list.append(np.reshape(mean, -1)) var_list.append(np.reshape(var, -1)) sample_num = 100 min_probability_array = [0] * K for _ in range(sample_num): order_preseving_nums = list() # For basic surrogate i=1:K-1. for idx in range(K - 1): sampled_y = self.rng.normal(mean_list[idx], var_list[idx]) _num, _ = self.calculate_preserving_order_num( sampled_y, test_y) order_preseving_nums.append(_num) fold_num = 5 # For basic surrogate i=K. cv if len(test_y) < 2 * fold_num: order_preseving_nums.append(0) else: # 5-fold cross validation. kfold = KFold(n_splits=fold_num) cv_pred = np.array([0] * len(test_y)) for train_idx, valid_idx in kfold.split(test_x): train_configs, train_y = test_x[train_idx], test_y[ train_idx] valid_configs, valid_y = test_x[valid_idx], test_y[ valid_idx] types, bounds = get_types(self.config_space) _surrogate = RandomForestWithInstances( types=types, bounds=bounds) _surrogate.train(train_configs, train_y) _pred, _var = _surrogate.predict(valid_configs) sampled_pred = self.rng.normal( _pred.reshape(-1), _var.reshape(-1)) cv_pred[valid_idx] = sampled_pred _num, _ = self.calculate_preserving_order_num( cv_pred, test_y) order_preseving_nums.append(_num) max_id = np.argmax(order_preseving_nums) min_probability_array[max_id] += 1 new_weights = np.array(min_probability_array) / sample_num else: raise ValueError('Invalid weight method: %s!' % self.weight_method) else: old_weights = list() for i, r in enumerate(r_list): _weight = self.surrogate.surrogate_weight[r] old_weights.append(_weight) new_weights = old_weights.copy() self.logger.info( '[%s] %d-th Updating weights: %s' % (self.weight_method, self.weight_changed_cnt, str(new_weights))) # Assign the weight to each basic surrogate. for i, r in enumerate(r_list): self.surrogate.surrogate_weight[r] = new_weights[i] self.weight_changed_cnt += 1 # Save the weight data. self.hist_weights.append(new_weights) dir_path = os.path.join(self.data_directory, 'saved_weights') file_name = 'mfes_weights_%s.npy' % (self.method_name, ) if not os.path.exists(dir_path): os.makedirs(dir_path) np.save(os.path.join(dir_path, file_name), np.asarray(self.hist_weights)) self.logger.info( 'update_weight() cost %.2fs. new weights are saved to %s' % (time.time() - start_time, os.path.join(dir_path, file_name))) def get_weights(self): return self.hist_weights
class BayesianOptimization(BaseFacade): def __init__(self, objective_function, config_space, sample_strategy='bo', time_limit_per_trial=180, max_runs=200, logging_dir='logs', initial_configurations=None, initial_runs=3, task_id='default_task_id', rng=None): super().__init__(config_space, task_id, output_dir=logging_dir) self.logger = super()._get_logger(self.__class__.__name__) if rng is None: run_id, rng = get_rng() self.init_num = initial_runs self.max_iterations = max_runs self.iteration_id = 0 self.sls_max_steps = None self.n_sls_iterations = 5 self.sls_n_steps_plateau_walk = 10 self.time_limit_per_trial = time_limit_per_trial self.default_obj_value = MAXINT self.sample_strategy = sample_strategy self.configurations = list() self.failed_configurations = list() self.perfs = list() # Initialize the basic component in BO. self.config_space.seed(rng.randint(MAXINT)) self.objective_function = objective_function types, bounds = get_types(config_space) # TODO: what is the feature array. self.model = RandomForestWithInstances(types=types, bounds=bounds, seed=rng.randint(MAXINT)) self.acquisition_function = EI(self.model) self.optimizer = InterleavedLocalAndRandomSearch( acquisition_function=self.acquisition_function, config_space=self.config_space, rng=np.random.RandomState(seed=rng.randint(MAXINT)), max_steps=self.sls_max_steps, n_steps_plateau_walk=self.sls_n_steps_plateau_walk, n_sls_iterations=self.n_sls_iterations ) self._random_search = RandomSearch( self.acquisition_function, self.config_space, rng ) self.random_configuration_chooser = ChooserProb(prob=0.25, rng=rng) def run(self): while self.iteration_id < self.max_iterations: self.iterate() def iterate(self): if len(self.configurations) == 0: X = np.array([]) else: failed_configs = list() if self.max_y is None else self.failed_configurations.copy() X = convert_configurations_to_array(self.configurations + failed_configs) failed_perfs = list() if self.max_y is None else [self.max_y] * len(self.failed_configurations) Y = np.array(self.perfs + failed_perfs, dtype=np.float64) config = self.choose_next(X, Y) trial_state = SUCCESS trial_info = None if config not in (self.configurations + self.failed_configurations): # Evaluate this configuration. try: args, kwargs = (config,), dict() timeout_status, _result = time_limit(self.objective_function, self.time_limit_per_trial, args=args, kwargs=kwargs) if timeout_status: raise TimeoutException( 'Timeout: time limit for this evaluation is %.1fs' % self.time_limit_per_trial) else: perf = MAXINT if _result is None else _result except Exception as e: if isinstance(e, TimeoutException): trial_state = TIMEOUT else: traceback.print_exc(file=sys.stdout) trial_state = FAILED perf = MAXINT trial_info = str(e) self.logger.error(trial_info) if trial_state == SUCCESS and perf < MAXINT: if len(self.configurations) == 0: self.default_obj_value = perf self.configurations.append(config) self.perfs.append(perf) self.history_container.add(config, perf) self.perc = np.percentile(self.perfs, self.scale_perc) self.min_y = np.min(self.perfs) self.max_y = np.max(self.perfs) else: self.failed_configurations.append(config) else: self.logger.debug('This configuration has been evaluated! Skip it.') if config in self.configurations: config_idx = self.configurations.index(config) trial_state, perf = SUCCESS, self.perfs[config_idx] else: trial_state, perf = FAILED, MAXINT self.iteration_id += 1 self.logger.info( 'Iteration-%d, objective improvement: %.4f' % (self.iteration_id, max(0, self.default_obj_value - perf))) return config, trial_state, perf, trial_info def choose_next(self, X: np.ndarray, Y: np.ndarray): _config_num = X.shape[0] if _config_num < self.init_num: default_config = self.config_space.get_default_configuration() if default_config not in (self.configurations + self.failed_configurations): return default_config else: return self._random_search.maximize(runhistory=self.history_container, num_points=1)[0] if self.sample_strategy == 'random': return self.sample_config() elif self.sample_strategy == 'bo': if self.random_configuration_chooser.check(self.iteration_id): return self.sample_config() else: self.model.train(X, Y) incumbent_value = self.history_container.get_incumbents()[0][1] self.acquisition_function.update(model=self.model, eta=incumbent_value, num_data=len(self.history_container.data)) challengers = self.optimizer.maximize( runhistory=self.history_container, num_points=5000, random_configuration_chooser=self.random_configuration_chooser ) return challengers.challengers[0] else: raise ValueError('Invalid sampling strategy - %s.' % self.sample_strategy) def sample_config(self): config = None _sample_cnt, _sample_limit = 0, 10000 while True: _sample_cnt += 1 config = self.config_space.sample_configuration() if config not in (self.configurations + self.failed_configurations): break if _sample_cnt >= _sample_limit: config = self.config_space.sample_configuration() break return config
class mqMFES(mqBaseFacade): """ MFES-HB: https://arxiv.org/abs/2012.03011 """ def __init__(self, objective_func, config_space: ConfigurationSpace, R, eta=3, num_iter=10000, rand_prob=0.3, init_weight=None, update_enable=True, weight_method='rank_loss_p_norm', fusion_method='idp', power_num=3, random_state=1, method_id='mqMFES', restart_needed=True, time_limit_per_trial=600, runtime_limit=None, ip='', port=13579, authkey=b'abc',): max_queue_len = 3 * R # conservative design super().__init__(objective_func, method_name=method_id, restart_needed=restart_needed, time_limit_per_trial=time_limit_per_trial, runtime_limit=runtime_limit, max_queue_len=max_queue_len, ip=ip, port=port, authkey=authkey) self.seed = random_state self.config_space = config_space self.config_space.seed(self.seed) self.R = R self.eta = eta self.logeta = lambda x: log(x) / log(self.eta) self.s_max = int(self.logeta(self.R)) self.B = (self.s_max + 1) * self.R self.num_iter = num_iter self.update_enable = update_enable self.fusion_method = fusion_method # Parameter for weight method `rank_loss_p_norm`. self.power_num = power_num # Specify the weight learning method. self.weight_method = weight_method self.weight_update_id = 0 self.weight_changed_cnt = 0 if init_weight is None: init_weight = [0.] init_weight.extend([1. / self.s_max] * self.s_max) assert len(init_weight) == (self.s_max + 1) self.logger.info('Weight method & flag: %s-%s' % (self.weight_method, str(self.update_enable))) self.logger.info("Initial weight is: %s" % init_weight[:self.s_max + 1]) types, bounds = get_types(config_space) self.weighted_surrogate = WeightedRandomForestCluster( types, bounds, self.s_max, self.eta, init_weight, self.fusion_method ) self.acquisition_function = EI(model=self.weighted_surrogate) self.incumbent_configs = [] self.incumbent_perfs = [] self.iterate_id = 0 self.iterate_r = [] self.hist_weights = list() # Saving evaluation statistics in Hyperband. self.target_x = dict() self.target_y = dict() for index, item in enumerate(np.logspace(0, self.s_max, self.s_max + 1, base=self.eta)): r = int(item) self.iterate_r.append(r) self.target_x[r] = [] self.target_y[r] = [] # BO optimizer settings. self.configs = list() self.history_container = HistoryContainer(task_id=self.method_name) self.sls_max_steps = None self.n_sls_iterations = 5 self.sls_n_steps_plateau_walk = 10 self.rng = np.random.RandomState(seed=self.seed) self.acq_optimizer = InterleavedLocalAndRandomSearch( acquisition_function=self.acquisition_function, config_space=self.config_space, rng=self.rng, max_steps=self.sls_max_steps, n_steps_plateau_walk=self.sls_n_steps_plateau_walk, n_sls_iterations=self.n_sls_iterations, rand_prob=0.0, ) self.random_configuration_chooser = ChooserProb(prob=rand_prob, rng=self.rng) def iterate(self, skip_last=0): for s in reversed(range(self.s_max + 1)): if self.update_enable and self.weight_update_id > self.s_max: self.update_weight() self.weight_update_id += 1 # Set initial number of configurations n = int(ceil(self.B / self.R / (s + 1) * self.eta ** s)) # initial number of iterations per config r = int(self.R * self.eta ** (-s)) # Choose a batch of configurations in different mechanisms. start_time = time.time() T = self.choose_next(n) time_elapsed = time.time() - start_time self.logger.info("[%s] Choosing next configurations took %.2f sec." % (self.method_name, time_elapsed)) extra_info = None last_run_num = None for i in range((s + 1) - int(skip_last)): # changed from s + 1 # Run each of the n configs for <iterations> # and keep best (n_configs / eta) configurations n_configs = n * self.eta ** (-i) n_iteration = r * self.eta ** (i) n_iter = n_iteration if last_run_num is not None and not self.restart_needed: n_iter -= last_run_num last_run_num = n_iteration self.logger.info("%s: %d configurations x %d iterations each" % (self.method_name, int(n_configs), int(n_iteration))) ret_val, early_stops = self.run_in_parallel(T, n_iter, extra_info) val_losses = [item['loss'] for item in ret_val] ref_list = [item['ref_id'] for item in ret_val] self.target_x[int(n_iteration)].extend(T) self.target_y[int(n_iteration)].extend(val_losses) if int(n_iteration) == self.R: self.incumbent_configs.extend(T) self.incumbent_perfs.extend(val_losses) # Update history container. for _config, _perf in zip(T, val_losses): self.history_container.add(_config, _perf) # Select a number of best configurations for the next loop. # Filter out early stops, if any. indices = np.argsort(val_losses) if len(T) == sum(early_stops): break if len(T) >= self.eta: indices = [i for i in indices if not early_stops[i]] T = [T[i] for i in indices] extra_info = [ref_list[i] for i in indices] reduced_num = int(n_configs / self.eta) T = T[0:reduced_num] extra_info = extra_info[0:reduced_num] else: T = [T[indices[0]]] # todo: confirm no filter early stops? extra_info = [ref_list[indices[0]]] val_losses = [val_losses[i] for i in indices][0:len(T)] # update: sorted incumbent_loss = val_losses[0] self.add_stage_history(self.stage_id, min(self.global_incumbent, incumbent_loss)) self.stage_id += 1 # self.remove_immediate_model() for item in self.iterate_r[self.iterate_r.index(r):]: # NORMALIZE Objective value: normalization normalized_y = std_normalization(self.target_y[item]) self.weighted_surrogate.train(convert_configurations_to_array(self.target_x[item]), np.array(normalized_y, dtype=np.float64), r=item) def run(self, skip_last=0): try: for iter in range(1, 1 + self.num_iter): self.logger.info('-' * 50) self.logger.info("%s algorithm: %d/%d iteration starts" % (self.method_name, iter, self.num_iter)) start_time = time.time() self.iterate(skip_last=skip_last) time_elapsed = (time.time() - start_time) / 60 self.logger.info("%d/%d-Iteration took %.2f min." % (iter, self.num_iter, time_elapsed)) self.iterate_id += 1 self.save_intemediate_statistics() except Exception as e: print(e) self.logger.error(str(e)) # Clean the immediate results. # self.remove_immediate_model() def get_bo_candidates(self, num_configs): # todo: parallel methods std_incumbent_value = np.min(std_normalization(self.target_y[self.iterate_r[-1]])) # Update surrogate model in acquisition function. self.acquisition_function.update(model=self.weighted_surrogate, eta=std_incumbent_value, num_data=len(self.history_container.data)) challengers = self.acq_optimizer.maximize( runhistory=self.history_container, num_points=5000, ) return challengers.challengers[:num_configs] def choose_next(self, num_config): if len(self.target_y[self.iterate_r[-1]]) == 0: configs = sample_configurations(self.config_space, num_config) self.configs.extend(configs) return configs config_candidates = list() acq_configs = self.get_bo_candidates(num_configs=2 * num_config) acq_idx = 0 for idx in range(1, 1 + 2 * num_config): # Like BOHB, sample a fixed percentage of random configurations. if self.random_configuration_chooser.check(idx): _config = self.config_space.sample_configuration() else: _config = acq_configs[acq_idx] acq_idx += 1 if _config not in config_candidates: config_candidates.append(_config) if len(config_candidates) >= num_config: break if len(config_candidates) < num_config: config_candidates = expand_configurations(config_candidates, self.config_space, num_config) _config_candidates = [] for config in config_candidates: if config not in self.configs: # Check if evaluated _config_candidates.append(config) self.configs.extend(_config_candidates) return _config_candidates @staticmethod def calculate_ranking_loss(y_pred, y_true): length = len(y_pred) y_pred = np.reshape(y_pred, -1) y_pred1 = np.tile(y_pred, (length, 1)) y_pred2 = np.transpose(y_pred1) diff = y_pred1 - y_pred2 y_true = np.reshape(y_true, -1) y_true1 = np.tile(y_true, (length, 1)) y_true2 = np.transpose(y_true1) y_mask = (y_true1 - y_true2 > 0) + 0 loss = np.sum(np.log(1 + np.exp(-diff)) * y_mask) / length return loss @staticmethod def calculate_preserving_order_num(y_pred, y_true): array_size = len(y_pred) assert len(y_true) == array_size total_pair_num, order_preserving_num = 0, 0 for idx in range(array_size): for inner_idx in range(idx + 1, array_size): if bool(y_true[idx] > y_true[inner_idx]) == bool(y_pred[idx] > y_pred[inner_idx]): order_preserving_num += 1 total_pair_num += 1 return order_preserving_num, total_pair_num def update_weight(self): start_time = time.time() max_r = self.iterate_r[-1] incumbent_configs = self.target_x[max_r] test_x = convert_configurations_to_array(incumbent_configs) test_y = np.array(self.target_y[max_r], dtype=np.float64) r_list = self.weighted_surrogate.surrogate_r K = len(r_list) if len(test_y) >= 3: # Get previous weights if self.weight_method == 'rank_loss_p_norm': preserving_order_p = list() preserving_order_nums = list() for i, r in enumerate(r_list): fold_num = 5 if i != K - 1: mean, var = self.weighted_surrogate.surrogate_container[r].predict(test_x) tmp_y = np.reshape(mean, -1) preorder_num, pair_num = self.calculate_preserving_order_num(tmp_y, test_y) preserving_order_p.append(preorder_num / pair_num) preserving_order_nums.append(preorder_num) else: if len(test_y) < 2 * fold_num: preserving_order_p.append(0) else: # 5-fold cross validation. kfold = KFold(n_splits=fold_num) cv_pred = np.array([0] * len(test_y)) for train_idx, valid_idx in kfold.split(test_x): train_configs, train_y = test_x[train_idx], test_y[train_idx] valid_configs, valid_y = test_x[valid_idx], test_y[valid_idx] types, bounds = get_types(self.config_space) _surrogate = RandomForestWithInstances(types=types, bounds=bounds) _surrogate.train(train_configs, train_y) pred, _ = _surrogate.predict(valid_configs) cv_pred[valid_idx] = pred.reshape(-1) preorder_num, pair_num = self.calculate_preserving_order_num(cv_pred, test_y) preserving_order_p.append(preorder_num / pair_num) preserving_order_nums.append(preorder_num) trans_order_weight = np.array(preserving_order_p) power_sum = np.sum(np.power(trans_order_weight, self.power_num)) new_weights = np.power(trans_order_weight, self.power_num) / power_sum elif self.weight_method == 'rank_loss_prob': # For basic surrogate i=1:K-1. mean_list, var_list = list(), list() for i, r in enumerate(r_list[:-1]): mean, var = self.weighted_surrogate.surrogate_container[r].predict(test_x) mean_list.append(np.reshape(mean, -1)) var_list.append(np.reshape(var, -1)) sample_num = 100 min_probability_array = [0] * K for _ in range(sample_num): order_preseving_nums = list() # For basic surrogate i=1:K-1. for idx in range(K - 1): sampled_y = self.rng.normal(mean_list[idx], var_list[idx]) _num, _ = self.calculate_preserving_order_num(sampled_y, test_y) order_preseving_nums.append(_num) fold_num = 5 # For basic surrogate i=K. cv if len(test_y) < 2 * fold_num: order_preseving_nums.append(0) else: # 5-fold cross validation. kfold = KFold(n_splits=fold_num) cv_pred = np.array([0] * len(test_y)) for train_idx, valid_idx in kfold.split(test_x): train_configs, train_y = test_x[train_idx], test_y[train_idx] valid_configs, valid_y = test_x[valid_idx], test_y[valid_idx] types, bounds = get_types(self.config_space) _surrogate = RandomForestWithInstances(types=types, bounds=bounds) _surrogate.train(train_configs, train_y) _pred, _var = _surrogate.predict(valid_configs) sampled_pred = self.rng.normal(_pred.reshape(-1), _var.reshape(-1)) cv_pred[valid_idx] = sampled_pred _num, _ = self.calculate_preserving_order_num(cv_pred, test_y) order_preseving_nums.append(_num) max_id = np.argmax(order_preseving_nums) min_probability_array[max_id] += 1 new_weights = np.array(min_probability_array) / sample_num else: raise ValueError('Invalid weight method: %s!' % self.weight_method) else: old_weights = list() for i, r in enumerate(r_list): _weight = self.weighted_surrogate.surrogate_weight[r] old_weights.append(_weight) new_weights = old_weights.copy() self.logger.info('[%s] %d-th Updating weights: %s' % ( self.weight_method, self.weight_changed_cnt, str(new_weights))) # Assign the weight to each basic surrogate. for i, r in enumerate(r_list): self.weighted_surrogate.surrogate_weight[r] = new_weights[i] self.weight_changed_cnt += 1 # Save the weight data. self.hist_weights.append(new_weights) dir_path = os.path.join(self.data_directory, 'saved_weights') file_name = 'mfes_weights_%s.npy' % (self.method_name,) if not os.path.exists(dir_path): os.makedirs(dir_path) np.save(os.path.join(dir_path, file_name), np.asarray(self.hist_weights)) self.logger.info('update_weight() cost %.2fs. new weights are saved to %s' % (time.time()-start_time, os.path.join(dir_path, file_name))) def get_incumbent(self, num_inc=1): assert (len(self.incumbent_perfs) == len(self.incumbent_configs)) indices = np.argsort(self.incumbent_perfs) configs = [self.incumbent_configs[i] for i in indices[0:num_inc]] perfs = [self.incumbent_perfs[i] for i in indices[0: num_inc]] return configs, perfs def get_weights(self): return self.hist_weights