def run_dae(): ######################################## # Initialization things with arguments # ######################################## config_root_logger() log.info("Creating a new DAE") mnist = MNIST() config = { "outdir": 'outputs/dae/mnist/', "input_size": 28 * 28, "tied_weights": True } dae = DenoisingAutoencoder(**config) # # Load initial weights and biases from file # params_to_load = 'dae_params.pkl' # dae.load_params(params_to_load) optimizer = AdaDelta(dae, mnist) optimizer.train() # Save some reconstruction output images import opendeep.data.dataset as datasets n_examples = 100 test_xs, _ = mnist.getSubset(subset=datasets.TEST) test_xs = test_xs[:n_examples].eval() dae.create_reconstruction_image(test_xs)
def run_dae(): ######################################## # Initialization things with arguments # ######################################## config_root_logger() log.info("Creating a new DAE") mnist = MNIST() config = { "outdir": 'outputs/dae/mnist/', "input_size": 28*28, "tied_weights": True } dae = DenoisingAutoencoder(**config) # # Load initial weights and biases from file # params_to_load = 'dae_params.pkl' # dae.load_params(params_to_load) optimizer = AdaDelta(dae, mnist) optimizer.train() # Save some reconstruction output images import opendeep.data.dataset as datasets n_examples = 100 test_xs, _ = mnist.getSubset(subset=datasets.TEST) test_xs = test_xs[:n_examples].eval() dae.create_reconstruction_image(test_xs)
def run_dae(): ######################################## # Initialization things with arguments # ######################################## config_root_logger() log.info("Creating a new DAE") mnist = MNIST() config = { "outdir": 'outputs/dae/mnist/', "input_size": 28 * 28, "tied_weights": True } dae = DenoisingAutoencoder(**config) # # Load initial weights and biases from file # params_to_load = 'dae_params.pkl' # dae.load_params(params_to_load) optimizer = AdaDelta(model=dae, dataset=mnist, epochs=100) optimizer.train() # Save some reconstruction output images n_examples = 100 test_xs = mnist.test_inputs[:n_examples] dae.create_reconstruction_image(test_xs) del dae, mnist
def run_dae(): ######################################## # Initialization things with arguments # ######################################## config_root_logger() log.info("Creating a new DAE") mnist = MNIST() config = { "outdir": 'outputs/dae/mnist/', "input_size": 28*28, "tied_weights": True } dae = DenoisingAutoencoder(**config) # # Load initial weights and biases from file # params_to_load = 'dae_params.pkl' # dae.load_params(params_to_load) optimizer = AdaDelta(model=dae, dataset=mnist, epochs=100) optimizer.train() # Save some reconstruction output images n_examples = 100 test_xs = mnist.test_inputs[:n_examples] dae.create_reconstruction_image(test_xs) del dae, mnist
def run_dae(): ######################################## # Initialization things with arguments # ######################################## config_root_logger() log.info("Creating a new DAE") mnist = MNIST() config = {"output_path": '../../../../outputs/dae/mnist/'} dae = DenoisingAutoencoder(config=config, dataset=mnist) # # Load initial weights and biases from file # params_to_load = 'dae_params.pkl' # dae.load_params(params_to_load) optimizer = AdaDelta(dae, mnist) optimizer.train() # Save some reconstruction output images import opendeep.data.dataset as datasets n_examples = 100 test_xs = mnist.getDataByIndices(indices=range(n_examples), subset=datasets.TEST) dae.create_reconstruction_image(test_xs)