def test_bravyi_kitaev_fast_generate_fermions(self): n_qubits = count_qubits(self.molecular_hamiltonian) # test for generating two fermions edge_matrix = _bksf.bravyi_kitaev_fast_edge_matrix( self.molecular_hamiltonian) edge_matrix_indices = numpy.array( numpy.nonzero( numpy.triu(edge_matrix) - numpy.diag(numpy.diag(edge_matrix)))) fermion_generation_operator = _bksf.generate_fermions( edge_matrix_indices, 2, 3) fermion_generation_sp_matrix = get_sparse_operator( fermion_generation_operator) fermion_generation_matrix = fermion_generation_sp_matrix.toarray() bksf_vacuum_state_operator = _bksf.vacuum_operator(edge_matrix_indices) bksf_vacuum_state_sp_matrix = get_sparse_operator( bksf_vacuum_state_operator) bksf_vacuum_state_matrix = bksf_vacuum_state_sp_matrix.toarray() vacuum_state = numpy.zeros((2**(n_qubits), 1)) vacuum_state[0] = 1. bksf_vacuum_state = numpy.dot(bksf_vacuum_state_matrix, vacuum_state) two_fermion_state = numpy.dot(fermion_generation_matrix, bksf_vacuum_state) # using total number operator to check the number of fermions generated tot_number_operator = _bksf.number_operator(self.molecular_hamiltonian) number_operator_sp_matrix = get_sparse_operator(tot_number_operator) number_operator_matrix = number_operator_sp_matrix.toarray() tot_fermions = numpy.dot( two_fermion_state.conjugate().T, numpy.dot(number_operator_matrix, two_fermion_state)) # checking the occupation number of site 2 and 3 number_operator_2 = _bksf.number_operator(self.molecular_hamiltonian, 2) number_operator_3 = _bksf.number_operator(self.molecular_hamiltonian, 3) number_operator_23 = number_operator_2 + number_operator_3 number_operator_23_sp_matrix = get_sparse_operator(number_operator_23) number_operator_23_matrix = number_operator_23_sp_matrix.toarray() tot_23_fermions = numpy.dot( two_fermion_state.conjugate().T, numpy.dot(number_operator_23_matrix, two_fermion_state)) self.assertTrue(2.0 - float(tot_fermions.real) < 1e-13) self.assertTrue(2.0 - float(tot_23_fermions.real) < 1e-13)
def test_bravyi_kitaev_fast_number_excitation_operator(self): # using hydrogen Hamiltonian and introducing some number operator terms constant = 0 one_body = numpy.zeros((4, 4)) one_body[(0, 0)] = .4 one_body[(1, 1)] = .5 one_body[(2, 2)] = .6 one_body[(3, 3)] = .7 two_body = self.molecular_hamiltonian.two_body_tensor # initiating number operator terms for all the possible cases two_body[(1, 2, 3, 1)] = 0.1 two_body[(1, 3, 2, 1)] = 0.1 two_body[(1, 2, 1, 3)] = 0.15 two_body[(3, 1, 2, 1)] = 0.15 two_body[(0, 2, 2, 1)] = 0.09 two_body[(1, 2, 2, 0)] = 0.09 two_body[(1, 2, 3, 2)] = 0.11 two_body[(2, 3, 2, 1)] = 0.11 two_body[(2, 2, 2, 2)] = 0.1 molecular_hamiltonian = InteractionOperator(constant, one_body, two_body) # comparing the eigenspectrum of Hamiltonian n_qubits = count_qubits(molecular_hamiltonian) bravyi_kitaev_fast_H = _bksf.bravyi_kitaev_fast(molecular_hamiltonian) jw_H = jordan_wigner(molecular_hamiltonian) bravyi_kitaev_fast_H_eig = eigenspectrum(bravyi_kitaev_fast_H) jw_H_eig = eigenspectrum(jw_H) bravyi_kitaev_fast_H_eig = bravyi_kitaev_fast_H_eig.round(5) jw_H_eig = jw_H_eig.round(5) evensector_H = 0 for i in range(numpy.size(jw_H_eig)): if bool( numpy.size( numpy.where(jw_H_eig[i] == bravyi_kitaev_fast_H_eig))): evensector_H += 1 # comparing eigenspectrum of number operator bravyi_kitaev_fast_n = _bksf.number_operator(molecular_hamiltonian) jw_n = QubitOperator() n_qubits = count_qubits(molecular_hamiltonian) for i in range(n_qubits): jw_n += jordan_wigner_one_body(i, i) jw_eig_spec = eigenspectrum(jw_n) bravyi_kitaev_fast_eig_spec = eigenspectrum(bravyi_kitaev_fast_n) evensector_n = 0 for i in range(numpy.size(jw_eig_spec)): if bool( numpy.size( numpy.where( jw_eig_spec[i] == bravyi_kitaev_fast_eig_spec))): evensector_n += 1 self.assertEqual(evensector_H, 2**(n_qubits - 1)) self.assertEqual(evensector_n, 2**(n_qubits - 1))
def test_bravyi_kitaev_fast_jw_number_operator(self): # bksf algorithm allows for even number of particles. So, compare the # spectrum of number operator from jordan-wigner and bksf algorithm # to make sure half of the jordan-wigner number operator spectrum # can be found in bksf number operator spectrum. bravyi_kitaev_fast_n = _bksf.number_operator( self.molecular_hamiltonian) jw_n = QubitOperator() n_qubits = count_qubits(self.molecular_hamiltonian) for i in range(n_qubits): jw_n += jordan_wigner_one_body(i, i) jw_eig_spec = eigenspectrum(jw_n) bravyi_kitaev_fast_eig_spec = eigenspectrum(bravyi_kitaev_fast_n) evensector = 0 for i in range(numpy.size(jw_eig_spec)): if bool(numpy.size(numpy.where(jw_eig_spec[i] == bravyi_kitaev_fast_eig_spec))): evensector += 1 self.assertEqual(evensector, 2**(n_qubits - 1))
def test_bravyi_kitaev_fast_excitation_terms(self): # Testing on-site and excitation terms in Hamiltonian constant = 0 one_body = numpy.array([[1, 2, 0, 3], [2, 1, 2, 0], [0, 2, 1, 2.5], [3, 0, 2.5, 1]]) # No Coloumb interaction two_body = numpy.zeros((4, 4, 4, 4)) molecular_hamiltonian = InteractionOperator(constant, one_body, two_body) n_qubits = count_qubits(molecular_hamiltonian) # comparing the eigenspectrum of Hamiltonian bravyi_kitaev_fast_H = _bksf.bravyi_kitaev_fast(molecular_hamiltonian) jw_H = jordan_wigner(molecular_hamiltonian) bravyi_kitaev_fast_H_eig = eigenspectrum(bravyi_kitaev_fast_H) jw_H_eig = eigenspectrum(jw_H) bravyi_kitaev_fast_H_eig = bravyi_kitaev_fast_H_eig.round(5) jw_H_eig = jw_H_eig.round(5) evensector_H = 0 for i in range(numpy.size(jw_H_eig)): if bool( numpy.size( numpy.where(jw_H_eig[i] == bravyi_kitaev_fast_H_eig))): evensector_H += 1 # comparing eigenspectrum of number operator bravyi_kitaev_fast_n = _bksf.number_operator(molecular_hamiltonian) jw_n = QubitOperator() n_qubits = count_qubits(molecular_hamiltonian) for i in range(n_qubits): jw_n += jordan_wigner_one_body(i, i) jw_eig_spec = eigenspectrum(jw_n) bravyi_kitaev_fast_eig_spec = eigenspectrum(bravyi_kitaev_fast_n) evensector_n = 0 for i in range(numpy.size(jw_eig_spec)): if bool( numpy.size( numpy.where( jw_eig_spec[i] == bravyi_kitaev_fast_eig_spec))): evensector_n += 1 self.assertEqual(evensector_H, 2**(n_qubits - 1)) self.assertEqual(evensector_n, 2**(n_qubits - 1))