def main(): args = parse_args() OpenKSModel.list_modules() model: ExpertRecModel = OpenKSModel.get_module("PyTorch", "HGTExpertRec")( "openks/data/nsf_dblp_kg/nsfkg/", args) model.preprocess_data() model.load_data_and_model() logger.info('Training HGT with #param: %d' % model.get_n_params()) model.train_expert() model.evaluate()
# Copyright (c) 2022 OpenKS Authors, SCIR, HIT. # All Rights Reserved. from openks.models import OpenKSModel import argparse # 列出已加载模型 OpenKSModel.list_modules() parser = argparse.ArgumentParser( description= 'Implement of SISO, SIMO, MISO, MIMO for Conditional Statement Extraction') # Model parameters. parser.add_argument('--train', type=str, default='data/stmts-train.tsv', help='location of the labeled training set') parser.add_argument('--eval', type=str, default='data/stmts-eval.tsv', help='location of the evaluation set') parser.add_argument('--model_name', type=str, default='MIMO_BERT_LSTM', help='the model to be trained') parser.add_argument('--language_model', type=str, default='resources/model.pt', help='language model checkpoint to use') parser.add_argument('--wordembed', type=str,