예제 #1
0
    def test_record_solver_nonlinear_newton(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        self.prob.model.nonlinear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)
        expected_solver_output = [
            {'name': 'px.x', 'values': [1.0]},
            {'name': 'pz.z', 'values': [5., 2.]},
            {'name': 'd1.y1', 'values': [25.58830237]},
            {'name': 'd2.y2', 'values': [12.05848815]},
            {'name': 'obj_cmp.obj', 'values': [28.58830817]},
            {'name': 'con_cmp1.con1', 'values': [-22.42830237]},
            {'name': 'con_cmp2.con2', 'values': [-11.94151185]}
        ]

        expected_abs_error = 2.1677810075550974e-10
        expected_rel_error = 5.966657077752565e-12
        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])
        self.assertEqual(solver_iteration['solver_residuals'], [])
        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #2
0
    def test_record_solver_nonlinear_nonlinear_run_once(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NonLinearRunOnce()
        self.prob.model.nonlinear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        # No norms so no expected norms
        expected_abs_error = 0.0
        expected_rel_error = 0.0
        expected_solver_residuals = None
        expected_solver_output = None

        solver_iteration = json.loads(self.solver_iterations)

        self.assertEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertEqual(expected_rel_error, solver_iteration['rel_err'])
        self.assertEqual(solver_iteration['solver_residuals'], [])
        self.assertEqual(solver_iteration['solver_output'], [])
예제 #3
0
    def test_only_objectives_recorded(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.recorder.options['record_desvars'] = False
        self.recorder.options['record_responses'] = False
        self.recorder.options['record_objectives'] = True
        self.recorder.options['record_constraints'] = False
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        driver_iteration_data = json.loads(self.driver_iteration_data)
        self.assertAlmostEqual(
            driver_iteration_data['objectives'][0]['values'][0], 28.5883082)
        self.assertEqual(driver_iteration_data['objectives'][0]['name'],
                         'obj_cmp.obj')
        self.assertEqual(driver_iteration_data['desvars'], [])
        self.assertEqual(driver_iteration_data['responses'], [])
        self.assertEqual(driver_iteration_data['constraints'], [])
예제 #4
0
    def test_record_solver_linear_scipy_iterative_solver(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        # used for analytic derivatives
        self.prob.model.nonlinear_solver.linear_solver = ScipyKrylov()

        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_abs_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_rel_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_solver_residuals'] = True
        self.prob.model.nonlinear_solver.linear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)
        t0, t1 = run_driver(self.prob)

        expected_abs_error = 0.0
        expected_rel_error = 0.0

        expected_solver_output = [
            {'name': 'px.x', 'values': [0.0]},
            {'name': 'pz.z', 'values': [0.0, 0.0]},
        ]

        upload(self.filename, self._accepted_token)
        solver_iteration = json.loads(self.solver_iterations)

        self.assertAlmostEqual(0.0, solver_iteration['abs_err'])
        self.assertAlmostEqual(0.0, solver_iteration['rel_err'])

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #5
0
    def test_only_desvars_recorded(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.recorder.options['record_desvars'] = True
        self.recorder.options['record_responses'] = False
        self.recorder.options['record_objectives'] = False
        self.recorder.options['record_constraints'] = False
        self.prob.driver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        driver_iteration_data = json.loads(self.driver_iteration_data)
        self.driver_iteration_data = None
        self.assertTrue({
            'name': 'px.x',
            'values': [1.0]
        } in driver_iteration_data['desvars'])
        self.assertTrue({
            'name': 'pz.z',
            'values': [5.0, 2.0]
        } in driver_iteration_data['desvars'])
        self.assertEqual(driver_iteration_data['responses'], [])
        self.assertEqual(driver_iteration_data['objectives'], [])
        self.assertEqual(driver_iteration_data['constraints'], [])
예제 #6
0
    def test_only_sysincludes_recorded(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.driver.recording_options['record_desvars'] = False
        self.prob.driver.recording_options['record_responses'] = False
        self.prob.driver.recording_options['record_objectives'] = False
        self.prob.driver.recording_options['record_constraints'] = False
        self.prob.driver.recording_options['includes'] = ['*']
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        driver_iteration_data = json.loads(self.driver_iteration_data)
        sysincludes = driver_iteration_data['sysincludes']

        self.assertEqual(len(driver_iteration_data['sysincludes']), 2)
        self.assertEqual(len(driver_iteration_data['objectives']), 0)
        self.assertEqual(len(driver_iteration_data['desvars']), 0)
        self.assertEqual(len(driver_iteration_data['constraints']), 0)
        self.assertEqual(len(driver_iteration_data['responses']), 0)
예제 #7
0
    def test_record_line_search_armijo_goldstein(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        model = self.prob.model
        model.nonlinear_solver = NewtonSolver()
        model.linear_solver = ScipyIterativeSolver()

        model._nonlinear_solver.options['solve_subsystems'] = True
        model._nonlinear_solver.options['max_sub_solves'] = 4
        ls = model._nonlinear_solver.linesearch = ArmijoGoldsteinLS(
            bound_enforcement='vector')

        # This is pretty bogus, but it ensures that we get a few LS iterations.
        ls.options['c'] = 100.0
        ls.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        expected_abs_error = 3.49773898733e-9
        expected_rel_error = expected_abs_error / 2.9086436370499857e-08

        solver_iteration = json.loads(self.solver_iterations)

        self.assertAlmostEqual(solver_iteration['abs_err'], expected_abs_error)
        self.assertAlmostEqual(solver_iteration['rel_err'], expected_rel_error)
        self.assertEqual(solver_iteration['solver_output'], [])
        self.assertEqual(solver_iteration['solver_residuals'], [])
예제 #8
0
    def test_record_line_search_bounds_enforce(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        model = self.prob.model
        model.nonlinear_solver = NewtonSolver()
        model.linear_solver = ScipyIterativeSolver()

        model.nonlinear_solver.options['solve_subsystems'] = True
        model.nonlinear_solver.options['max_sub_solves'] = 4
        ls = model.nonlinear_solver.linesearch = BoundsEnforceLS(
            bound_enforcement='vector')

        ls.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        expected_abs_error = 7.02783609310096e-10
        expected_rel_error = 8.078674883382422e-07

        solver_iteration = json.loads(self.solver_iterations)
        self.assertAlmostEqual(solver_iteration['abs_err'], expected_abs_error)
        self.assertAlmostEqual(solver_iteration['rel_err'], expected_rel_error)
        self.assertEqual(solver_iteration['solver_output'], [])
        self.assertEqual(solver_iteration['solver_residuals'], [])
예제 #9
0
    def test_driver_records_metadata(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.recorder.options['includes'] = ["p1.x"]
        self.recorder.options['record_metadata'] = True
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        # Need this since we aren't running the model.
        self.prob.final_setup()

        self.prob.cleanup()

        upload(self.filename, self._accepted_token, suppress_output=True)
        self.assertTrue(self.recorded_metadata)
        self.recorded_metadata = False

        driv_data = json.loads(self.driver_data)
        self.driver_data = None

        driv_id = driv_data['id']
        model_data = json.loads(driv_data['model_viewer_data'])
        connections = model_data['connections_list']
        self.assertEqual(driv_id, 'Driver')
        self.assertEqual(len(connections), 11)
예제 #10
0
    def test_driver_records_metadata(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.driver.recording_options['includes'] = ["p1.x"]
        self.prob.driver.recording_options['record_metadata'] = True
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        # Need this since we aren't running the model.
        self.prob.final_setup()

        self.prob.cleanup()

        upload(self.filename, self._accepted_token, suppress_output=True)
        self.assertTrue(self.recorded_driver_metadata)
        self.recorded_driver_metadata = False

        driv_data = json.loads(self.driver_data)
        self.driver_data = None

        driv_id = driv_data['id']
        model_data = json.loads(driv_data['model_viewer_data'])
        connections = model_data['connections_list']
        self.assertEqual(driv_id, 'Driver')
        self.assertEqual(len(connections), 11)
예제 #11
0
    def test_only_desvars_recorded(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.driver.recording_options['record_desvars'] = True
        self.prob.driver.recording_options['record_responses'] = False
        self.prob.driver.recording_options['record_objectives'] = False
        self.prob.driver.recording_options['record_constraints'] = False
        self.prob.driver.recording_options['includes'] = []
        self.prob.driver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        driver_iteration_data = json.loads(self.driver_iteration_data)
        self.driver_iteration_data = None
        self.assertTrue({'name': 'px.x', 'values': [1.0]} in driver_iteration_data['desvars'])
        self.assertTrue({'name': 'pz.z', 'values': [5.0, 2.0]} in driver_iteration_data['desvars'])
        self.assertEqual(driver_iteration_data['responses'], [])
        self.assertEqual(driver_iteration_data['objectives'], [])
        self.assertEqual(driver_iteration_data['constraints'], [])
예제 #12
0
    def test_record_solver_linear_linear_run_once(self, m):
        self.setup_endpoints(m)
        # raise unittest.SkipTest("Linear Solver recording not working yet")
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        # used for analytic derivatives
        self.prob.model.nonlinear_solver.linear_solver = LinearRunOnce()

        self.recorder.options['record_abs_error'] = True
        self.recorder.options['record_rel_error'] = True
        self.recorder.options['record_solver_output'] = True
        self.recorder.options['record_solver_residuals'] = True
        self.prob.model.nonlinear_solver.linear_solver.add_recorder(
            self.recorder)

        self.prob.setup(check=False)
        t0, t1 = run_driver(self.prob)
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)
        expected_abs_error = 0.0
        expected_rel_error = 0.0

        expected_solver_output = [
            {
                'name': 'px.x',
                'values': [0.0]
            },
            {
                'name': 'pz.z',
                'values': [0.0, 0.0]
            },
            {
                'name': 'd1.y1',
                'values': [-4.15366975e-05]
            },
            {
                'name': 'd2.y2',
                'values': [-4.10568454e-06]
            },
            {
                'name': 'obj_cmp.obj',
                'values': [-4.15366737e-05]
            },
            {
                'name': 'con_cmp1.con1',
                'values': [4.15366975e-05]
            },
            {
                'name': 'con_cmp2.con2',
                'values': [-4.10568454e-06]
            },
        ]

        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #13
0
    def test_record_solver_nonlinear_block_jac(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NonlinearBlockJac()
        self.prob.model.nonlinear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)

        expected_abs_error = 7.234027587097439e-07
        expected_rel_error = 1.991112651729199e-08
        expected_solver_output = [
            {'name': 'px.x', 'values': [1.0]},
            {'name': 'pz.z', 'values': [5., 2.]},
            {'name': 'd1.y1', 'values': [25.58830237]},
            {'name': 'd2.y2', 'values': [12.05848815]},
            {'name': 'obj_cmp.obj', 'values': [28.58830817]},
            {'name': 'con_cmp1.con1', 'values': [-22.42830237]},
            {'name': 'con_cmp2.con2', 'values': [-11.94151185]}
        ]

        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])
        self.assertEqual(solver_iteration['solver_residuals'], [])
        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #14
0
    def test_record_solver_nonlinear_nonlinear_run_once(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NonlinearRunOnce()
        self.prob.model.nonlinear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        # No norms so no expected norms
        expected_abs_error = 0.0
        expected_rel_error = 0.0
        expected_solver_residuals = None
        expected_solver_output = [
            {'name': 'px.x', 'values': [1.]},
            {'name': 'pz.z', 'values': [5., 2.]},
            {'name': 'd1.y1', 'values': [27.8]},
            {'name': 'd2.y2', 'values': [12.27257053]},
            {'name': 'obj_cmp.obj', 'values': [30.80000468]},
            {'name': 'con_cmp1.con1', 'values': [-24.64]},
            {'name': 'con_cmp2.con2', 'values': [-11.72742947]}
        ]

        solver_iteration = json.loads(self.solver_iterations)

        self.assertEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertEqual(expected_rel_error, solver_iteration['rel_err'])
        self.assertEqual(solver_iteration['solver_residuals'], [])
        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #15
0
    def test_record_solver_linear_block_gs(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        # used for analytic derivatives
        self.prob.model.nonlinear_solver.linear_solver = LinearBlockGS()

        self.recorder.options['record_abs_error'] = True
        self.recorder.options['record_rel_error'] = True
        self.recorder.options['record_solver_output'] = True
        self.recorder.options['record_solver_residuals'] = True
        self.prob.model.nonlinear_solver.linear_solver.add_recorder(
            self.recorder)

        self.prob.setup(check=False)
        t0, t1 = run_driver(self.prob)
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)
        expected_abs_error = 9.109083208861876e-11
        expected_rel_error = 9.114367543620551e-12

        expected_solver_output = [
            {
                'name': 'px.x',
                'values': [0.0]
            },
            {
                'name': 'pz.z',
                'values': [0.0, 0.0]
            },
            {
                'name': 'd1.y1',
                'values': [0.00045069]
            },
            {
                'name': 'd2.y2',
                'values': [-0.00225346]
            },
            {
                'name': 'obj_cmp.obj',
                'values': [0.00045646]
            },
            {
                'name': 'con_cmp1.con1',
                'values': [-0.00045069]
            },
            {
                'name': 'con_cmp2.con2',
                'values': [-0.00225346]
            },
        ]

        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #16
0
    def test_record_solver_linear_block_jac(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        # used for analytic derivatives
        self.prob.model.nonlinear_solver.linear_solver = LinearBlockJac()

        self.recorder.options['record_abs_error'] = True
        self.recorder.options['record_rel_error'] = True
        self.recorder.options['record_solver_output'] = True
        self.recorder.options['record_solver_residuals'] = True
        self.prob.model.nonlinear_solver.linear_solver.add_recorder(
            self.recorder)

        self.prob.setup(check=False)
        t0, t1 = run_driver(self.prob)
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)
        expected_abs_error = 9.947388408259769e-11
        expected_rel_error = 4.330301334141486e-08

        expected_solver_output = [
            {
                'name': 'px.x',
                'values': [0.0]
            },
            {
                'name': 'pz.z',
                'values': [0.0, 0.0]
            },
            {
                'name': 'd1.y1',
                'values': [4.55485639e-09]
            },
            {
                'name': 'd2.y2',
                'values': [-2.27783334e-08]
            },
            {
                'name': 'obj_cmp.obj',
                'values': [-2.28447051e-07]
            },
            {
                'name': 'con_cmp1.con1',
                'values': [2.28461863e-07]
            },
            {
                'name': 'con_cmp2.con2',
                'values': [-2.27742837e-08]
            },
        ]

        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #17
0
    def test_implicit_component(self, m):
        self.setup_endpoints(m)
        from openmdao.core.tests.test_impl_comp import QuadraticLinearize, QuadraticJacVec
        group = Group()
        group.add_subsystem('comp1',
                            IndepVarComp([('a', 1.0), ('b', 1.0), ('c', 1.0)]))
        group.add_subsystem('comp2', QuadraticLinearize())
        group.add_subsystem('comp3', QuadraticJacVec())
        group.connect('comp1.a', 'comp2.a')
        group.connect('comp1.b', 'comp2.b')
        group.connect('comp1.c', 'comp2.c')
        group.connect('comp1.a', 'comp3.a')
        group.connect('comp1.b', 'comp3.b')
        group.connect('comp1.c', 'comp3.c')

        prob = Problem(model=group)
        prob.setup(check=False)

        prob['comp1.a'] = 1.
        prob['comp1.b'] = -4.
        prob['comp1.c'] = 3.

        comp2 = prob.model.get_subsystem('comp2')  # ImplicitComponent

        self.recorder.options['record_metadata'] = False
        comp2.add_recorder(self.recorder)

        t0, t1 = run_driver(prob)
        prob.cleanup()
        upload(self.filename, self._accepted_token)

        expected_inputs = [{
            'name': 'comp2.a',
            'values': [1.0]
        }, {
            'name': 'comp2.b',
            'values': [-4.0]
        }, {
            'name': 'comp2.c',
            'values': [3.0]
        }]
        expected_outputs = [{'name': 'comp2.x', 'values': [3.0]}]
        expected_residuals = [{'name': 'comp2.x', 'values': [0.0]}]

        system_iteration = json.loads(self.system_iterations)

        for i in expected_inputs:
            self.assert_array_close(i, system_iteration['inputs'])

        for r in expected_residuals:
            self.assert_array_close(r, system_iteration['residuals'])

        for o in expected_outputs:
            self.assert_array_close(o, system_iteration['outputs'])
예제 #18
0
    def test_driver_doesnt_record_metadata(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.driver.recording_options['record_metadata'] = False
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token, suppress_output=True)

        driv_data = json.loads(self.driver_data)
        self.assertEqual(driv_data['model_viewer_data'], '{}')
예제 #19
0
    def test_driver_doesnt_record_metadata(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.recorder.options['record_metadata'] = False
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token, suppress_output=True)

        driv_data = json.loads(self.driver_data)
        self.assertEqual(driv_data['model_viewer_data'], '{}')
예제 #20
0
    def test_record_solver_nonlinear_block_gs(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NonlinearBlockGS()
        self.prob.model.nonlinear_solver.add_recorder(self.recorder)

        self.prob.model.nonlinear_solver.recording_options['record_solver_residuals'] = True

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        coordinate = [0, 'Driver', (0,), 'root._solve_nonlinear', (0,), 'NonlinearBlockGS', (6, )]
        expected_abs_error = 1.31880284470753394998e-10
        expected_rel_error = 3.6299074030587596e-12

        expected_solver_output = [
            {'name': 'px.x', 'values': [1.0]},
            {'name': 'pz.z', 'values': [5., 2.]},
            {'name': 'd1.y1', 'values': [25.58830237]},
            {'name': 'd2.y2', 'values': [12.05848815]},
            {'name': 'obj_cmp.obj', 'values': [28.58830817]},
            {'name': 'con_cmp1.con1', 'values': [-22.42830237]},
            {'name': 'con_cmp2.con2', 'values': [-11.94151185]}
        ]

        expected_solver_residuals = [
            {'name': 'px.x', 'values': [-0]},
            {'name': 'pz.z', 'values': [-0., -0.]},
            {'name': 'd1.y1', 'values': [1.31880284e-10]},
            {'name': 'd2.y2', 'values': [0.]},
            {'name': 'obj_cmp.obj', 'values': [0.]},
            {'name': 'con_cmp1.con1', 'values': [0.]},
            {'name': 'con_cmp2.con2', 'values': [0.]},
        ]

        solver_iteration = json.loads(self.solver_iterations)

        self.assertAlmostEqual(solver_iteration['abs_err'], expected_abs_error)
        self.assertAlmostEqual(solver_iteration['rel_err'], expected_rel_error)

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])

        for r in expected_solver_residuals:
            self.assert_array_close(r, solver_iteration['solver_residuals'])
예제 #21
0
    def test_only_constraints_recorded(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.recorder.options['record_desvars'] = False
        self.recorder.options['record_responses'] = False
        self.recorder.options['record_objectives'] = False
        self.recorder.options['record_constraints'] = True
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        driver_iteration_data = json.loads(self.driver_iteration_data)
        if driver_iteration_data['constraints'][0]['name'] == 'con_cmp1.con1':
            self.assertAlmostEqual(
                driver_iteration_data['constraints'][0]['values'][0],
                -22.42830237)
            self.assertAlmostEqual(
                driver_iteration_data['constraints'][1]['values'][0],
                -11.94151185)
            self.assertEqual(driver_iteration_data['constraints'][1]['name'],
                             'con_cmp2.con2')
            self.assertEqual(driver_iteration_data['constraints'][0]['name'],
                             'con_cmp1.con1')
        elif driver_iteration_data['constraints'][0][
                'name'] == 'con_cmp2.con2':
            self.assertAlmostEqual(
                driver_iteration_data['constraints'][1]['values'][0],
                -22.42830237)
            self.assertAlmostEqual(
                driver_iteration_data['constraints'][0]['values'][0],
                -11.94151185)
            self.assertEqual(driver_iteration_data['constraints'][0]['name'],
                             'con_cmp2.con2')
            self.assertEqual(driver_iteration_data['constraints'][1]['name'],
                             'con_cmp1.con1')
        else:
            self.assertTrue(
                False, 'Driver iteration data did not contain\
             the expected names for constraints')

        self.assertEqual(driver_iteration_data['desvars'], [])
        self.assertEqual(driver_iteration_data['objectives'], [])
        self.assertEqual(driver_iteration_data['responses'], [])
예제 #22
0
    def test_implicit_component(self, m):
        self.setup_endpoints(m)
        from openmdao.core.tests.test_impl_comp import QuadraticLinearize, QuadraticJacVec
        group = Group()
        group.add_subsystem('comp1', IndepVarComp([('a', 1.0), ('b', 1.0), ('c', 1.0)]))
        group.add_subsystem('comp2', QuadraticLinearize())
        group.add_subsystem('comp3', QuadraticJacVec())
        group.connect('comp1.a', 'comp2.a')
        group.connect('comp1.b', 'comp2.b')
        group.connect('comp1.c', 'comp2.c')
        group.connect('comp1.a', 'comp3.a')
        group.connect('comp1.b', 'comp3.b')
        group.connect('comp1.c', 'comp3.c')

        prob = Problem(model=group)
        prob.setup(check=False)

        prob['comp1.a'] = 1.
        prob['comp1.b'] = -4.
        prob['comp1.c'] = 3.

        comp2 = prob.model.comp2  # ImplicitComponent

        comp2.recording_options['record_metadata'] = False
        comp2.add_recorder(self.recorder)

        t0, t1 = run_driver(prob)
        prob.cleanup()
        upload(self.filename, self._accepted_token)

        expected_inputs = [
            {'name': 'comp2.a', 'values': [1.0]},
            {'name': 'comp2.b', 'values': [-4.0]},
            {'name': 'comp2.c', 'values': [3.0]}
        ]
        expected_outputs = [{'name': 'comp2.x', 'values': [3.0]}]
        expected_residuals = [{'name': 'comp2.x', 'values': [0.0]}]

        system_iteration = json.loads(self.system_iterations)

        for i in expected_inputs:
            self.assert_array_close(i, system_iteration['inputs'])

        for r in expected_residuals:
            self.assert_array_close(r, system_iteration['residuals'])

        for o in expected_outputs:
            self.assert_array_close(o, system_iteration['outputs'])
예제 #23
0
    def test_record_solver(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.model._nonlinear_solver.recording_options['record_abs_error'] = True
        self.prob.model._nonlinear_solver.recording_options['record_rel_error'] = True
        self.prob.model._nonlinear_solver.recording_options['record_solver_residuals'] = True
        self.prob.model._nonlinear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        expected_solver_output = [
            {'name': 'con_cmp1.con1', 'values': [-22.42830237]},
            {'name': 'd1.y1', 'values': [25.58830237]},
            {'name': 'con_cmp2.con2', 'values': [-11.941511849]},
            {'name': 'pz.z', 'values': [5.0, 2.0]},
            {'name': 'obj_cmp.obj', 'values': [28.588308165]},
            {'name': 'd2.y2', 'values': [12.058488150]},
            {'name': 'px.x', 'values': [1.0]}
        ]

        expected_solver_residuals = [
            {'name': 'con_cmp1.con1', 'values': [0.0]},
            {'name': 'd1.y1', 'values': [1.318802844707534e-10]},
            {'name': 'con_cmp2.con2', 'values': [0.0]},
            {'name': 'pz.z', 'values': [0.0, 0.0]},
            {'name': 'obj_cmp.obj', 'values': [0.0]},
            {'name': 'd2.y2', 'values': [0.0]},
            {'name': 'px.x', 'values': [0.0]}
        ]

        solver_iteration = json.loads(self.solver_iterations)

        self.assertAlmostEqual(solver_iteration['abs_err'], 1.31880284470753394998e-10)
        self.assertAlmostEqual(solver_iteration['rel_err'], 3.6299074030587596e-12)

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])

        for r in expected_solver_residuals:
            self
예제 #24
0
    def test_record_solver_linear_direct_solver(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        # used for analytic derivatives
        self.prob.model.nonlinear_solver.linear_solver = DirectSolver()

        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_abs_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_rel_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_solver_residuals'] = True
        self.prob.model.nonlinear_solver.linear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)
        t0, t1 = run_driver(self.prob)

        expected_solver_output = [
            {'name': 'px.x', 'values': [0.0]},
            {'name': 'pz.z', 'values': [0.0, 0.0]},
            {'name': 'd1.y1', 'values': [0.00045069]},
            {'name': 'd2.y2', 'values': [-0.00225346]},
            {'name': 'obj_cmp.obj', 'values': [0.00045646]},
            {'name': 'con_cmp1.con1', 'values': [-0.00045069]},
            {'name': 'con_cmp2.con2', 'values': [-0.00225346]},
        ]

        expected_solver_residuals = [
            {'name': 'px.x', 'values': [0.0]},
            {'name': 'pz.z', 'values': [-0., -0.]},
            {'name': 'd1.y1', 'values': [0.0]},
            {'name': 'd2.y2', 'values': [-0.00229801]},
            {'name': 'obj_cmp.obj', 'values': [5.75455956e-06]},
            {'name': 'con_cmp1.con1', 'values': [-0.]},
            {'name': 'con_cmp2.con2', 'values': [-0.]},
        ]
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)

        self.assertAlmostEqual(0.0, solver_iteration['abs_err'])
        self.assertAlmostEqual(0.0, solver_iteration['rel_err'])

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])

        for r in expected_solver_residuals:
            self.assert_array_close(r, solver_iteration['solver_residuals'])
예제 #25
0
    def test_header_without_case_id(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.driver.recording_options['includes'] = ["p1.x"]
        self.prob.driver.recording_options['record_metadata'] = True
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        # Need this since we aren't running the model.
        self.prob.final_setup()

        self.prob.cleanup()
        upload(self.filename, self._accepted_token, suppress_output=True)
        self.assertTrue(self.recorded_driver_metadata)
        self.recorded_driver_metadata = False

        self.assertEqual(self.update_header, 'False')
예제 #26
0
    def test_record_metadata_values(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.model.d1.add_recorder(self.recorder)
        self.prob.setup(check=False)

        run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)
        self.assertTrue(self.recorded_metadata)

        metadata = json.loads(self.metadata)
        self.assertEqual(metadata['abs2prom']['input']['d1.z'], 'z')
        self.assertEqual(metadata['abs2prom']['input']['d1.x'], 'x')
        self.assertEqual(metadata['prom2abs']['input']['z'][0], 'd1.z')
        self.assertEqual(metadata['prom2abs']['input']['x'][0], 'd1.x')
예제 #27
0
    def test_header_without_case_id(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.recorder.options['includes'] = ["p1.x"]
        self.recorder.options['record_metadata'] = True
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        # Need this since we aren't running the model.
        self.prob.final_setup()

        self.prob.cleanup()
        upload(self.filename, self._accepted_token, suppress_output=True)
        self.assertTrue(self.recorded_metadata)
        self.recorded_metadata = False

        self.assertEqual(self.update_header, 'False')
예제 #28
0
    def test_record_line_search_armijo_goldstein(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        model = self.prob.model
        model.nonlinear_solver = NewtonSolver()
        model.linear_solver = ScipyKrylov()

        model._nonlinear_solver.options['solve_subsystems'] = True
        model._nonlinear_solver.options['max_sub_solves'] = 4
        ls = model._nonlinear_solver.linesearch = ArmijoGoldsteinLS(bound_enforcement='vector')

        # This is pretty bogus, but it ensures that we get a few LS iterations.
        ls.options['c'] = 100.0
        ls.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        expected_abs_error = 3.49773898733e-9
        expected_rel_error = expected_abs_error / 2.9086436370499857e-08

        solver_iteration = json.loads(self.solver_iterations)
        expected_solver_output = [
            {'name': 'con_cmp1.con1', 'values': [-22.42830237]},
            {'name': 'd1.y1', 'values': [25.58830237]},
            {'name': 'con_cmp2.con2', 'values': [-11.941511849]},
            {'name': 'pz.z', 'values': [5.0, 2.0]},
            {'name': 'obj_cmp.obj', 'values': [28.588308165]},
            {'name': 'd2.y2', 'values': [12.058488150]},
            {'name': 'px.x', 'values': [1.0]}
        ]

        self.assertAlmostEqual(solver_iteration['abs_err'], expected_abs_error)
        self.assertAlmostEqual(solver_iteration['rel_err'], expected_rel_error)
        self.assertEqual(solver_iteration['solver_residuals'], [])
        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #29
0
    def test_only_constraints_recorded(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.driver.recording_options['record_desvars'] = False
        self.prob.driver.recording_options['record_responses'] = False
        self.prob.driver.recording_options['record_objectives'] = False
        self.prob.driver.recording_options['record_constraints'] = True
        self.prob.driver.recording_options['includes'] = []
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        driver_iteration_data = json.loads(self.driver_iteration_data)
        if driver_iteration_data['constraints'][0]['name'] == 'con_cmp1.con1':
            self.assertAlmostEqual(driver_iteration_data['constraints'][0]['values'][0],
                                   -22.42830237)
            self.assertAlmostEqual(driver_iteration_data['constraints'][1]['values'][0],
                                   -11.94151185)
            self.assertEqual(driver_iteration_data['constraints'][1]['name'], 'con_cmp2.con2')
            self.assertEqual(driver_iteration_data['constraints'][0]['name'], 'con_cmp1.con1')
        elif driver_iteration_data['constraints'][0]['name'] == 'con_cmp2.con2':
            self.assertAlmostEqual(driver_iteration_data['constraints'][1]['values'][0],
                                   -22.42830237)
            self.assertAlmostEqual(driver_iteration_data['constraints'][0]['values'][0],
                                   -11.94151185)
            self.assertEqual(driver_iteration_data['constraints'][0]['name'], 'con_cmp2.con2')
            self.assertEqual(driver_iteration_data['constraints'][1]['name'], 'con_cmp1.con1')
        else:
            self.assertTrue(False, 'Driver iteration data did not contain\
             the expected names for constraints')

        self.assertEqual(driver_iteration_data['desvars'], [])
        self.assertEqual(driver_iteration_data['objectives'], [])
        self.assertEqual(driver_iteration_data['responses'], [])
예제 #30
0
    def test_record_line_search_bounds_enforce(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        model = self.prob.model
        model.nonlinear_solver = NewtonSolver()
        model.linear_solver = ScipyKrylov()

        model.nonlinear_solver.options['solve_subsystems'] = True
        model.nonlinear_solver.options['max_sub_solves'] = 4
        ls = model.nonlinear_solver.linesearch = BoundsEnforceLS(bound_enforcement='vector')

        ls.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        expected_abs_error = 7.02783609310096e-10
        expected_rel_error = 8.078674883382422e-07
        expected_solver_output = [
            {'name': 'con_cmp1.con1', 'values': [-22.42830237]},
            {'name': 'd1.y1', 'values': [25.58830237]},
            {'name': 'con_cmp2.con2', 'values': [-11.941511849]},
            {'name': 'pz.z', 'values': [5.0, 2.0]},
            {'name': 'obj_cmp.obj', 'values': [28.588308165]},
            {'name': 'd2.y2', 'values': [12.058488150]},
            {'name': 'px.x', 'values': [1.0]}
        ]

        solver_iteration = json.loads(self.solver_iterations)
        self.assertAlmostEqual(solver_iteration['abs_err'], expected_abs_error)
        self.assertAlmostEqual(solver_iteration['rel_err'], expected_rel_error)
        self.assertEqual(solver_iteration['solver_residuals'], [])
        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #31
0
파일: test_upload.py 프로젝트: hwangjt/blue
    def test_record_solver_nonlinear_newton(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        self.prob.model.nonlinear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)

        expected_abs_error = 5.041402548755789e-06
        expected_rel_error = 1.3876088080160474e-07
        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])
        self.assertEqual(solver_iteration['solver_residuals'], [])
        self.assertEqual(solver_iteration['solver_output'], [])
예제 #32
0
    def test_record_solver_nonlinear_block_jac(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NonlinearBlockJac()
        self.prob.model.nonlinear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)

        expected_abs_error = 7.234027587097439e-07
        expected_rel_error = 1.991112651729199e-08
        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])
        self.assertEqual(solver_iteration['solver_residuals'], [])
        self.assertEqual(solver_iteration['solver_output'], [])
예제 #33
0
    def test_record_solver_nonlinear_newton(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        self.prob.model.nonlinear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)

        expected_abs_error = 2.1677810075550974e-10
        expected_rel_error = 5.966657077752565e-12
        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])
        self.assertEqual(solver_iteration['solver_residuals'], [])
        self.assertEqual(solver_iteration['solver_output'], [])
예제 #34
0
    def test_record_metadata(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)
        
        self.assertTrue(self.recorded_metadata)
        self.recorded_metadata = False

        metadata = json.loads(self.metadata)
        self.metadata = None

        self.assertEqual(len(metadata['abs2prom']['input']), 11)
        self.assertEqual(len(metadata['abs2prom']['output']), 7)
        self.assertEqual(len(metadata['prom2abs']['input']), 4)
        self.assertEqual(len(metadata['prom2abs']['output']), 7)
예제 #35
0
    def test_record_solver_linear_linear_run_once(self, m):
        self.setup_endpoints(m)
        # raise unittest.SkipTest("Linear Solver recording not working yet")
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        # used for analytic derivatives
        self.prob.model.nonlinear_solver.linear_solver = LinearRunOnce()

        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_abs_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_rel_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_solver_residuals'] = True
        self.prob.model.nonlinear_solver.linear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)
        t0, t1 = run_driver(self.prob)
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)
        expected_abs_error = 0.0
        expected_rel_error = 0.0

        expected_solver_output = [
            {'name': 'px.x', 'values': [0.0]},
            {'name': 'pz.z', 'values': [0.0, 0.0]},
            {'name': 'd1.y1', 'values': [-4.15366975e-05]},
            {'name': 'd2.y2', 'values': [-4.10568454e-06]},
            {'name': 'obj_cmp.obj', 'values': [-4.15366737e-05]},
            {'name': 'con_cmp1.con1', 'values': [4.15366975e-05]},
            {'name': 'con_cmp2.con2', 'values': [-4.10568454e-06]},
        ]

        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #36
0
    def test_record_solver_linear_block_jac(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        # used for analytic derivatives
        self.prob.model.nonlinear_solver.linear_solver = LinearBlockJac()

        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_abs_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_rel_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_solver_residuals'] = True
        self.prob.model.nonlinear_solver.linear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)
        t0, t1 = run_driver(self.prob)
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)
        expected_abs_error = 9.947388408259769e-11
        expected_rel_error = 4.330301334141486e-08

        expected_solver_output = [
            {'name': 'px.x', 'values': [0.0]},
            {'name': 'pz.z', 'values': [0.0, 0.0]},
            {'name': 'd1.y1', 'values': [4.55485639e-09]},
            {'name': 'd2.y2', 'values': [-2.27783334e-08]},
            {'name': 'obj_cmp.obj', 'values': [-2.28447051e-07]},
            {'name': 'con_cmp1.con1', 'values': [2.28461863e-07]},
            {'name': 'con_cmp2.con2', 'values': [-2.27742837e-08]},
        ]

        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #37
0
    def test_only_objectives_recorded(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.driver.recording_options['record_desvars'] = False
        self.prob.driver.recording_options['record_responses'] = False
        self.prob.driver.recording_options['record_objectives'] = True
        self.prob.driver.recording_options['record_constraints'] = False
        self.prob.driver.recording_options['includes'] = []
        self.prob.driver.add_recorder(self.recorder)
        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        driver_iteration_data = json.loads(self.driver_iteration_data)
        self.assertAlmostEqual(driver_iteration_data['objectives'][0]['values'][0], 28.5883082)
        self.assertEqual(driver_iteration_data['objectives'][0]['name'], 'obj_cmp.obj')
        self.assertEqual(driver_iteration_data['desvars'], [])
        self.assertEqual(driver_iteration_data['responses'], [])
        self.assertEqual(driver_iteration_data['constraints'], [])
예제 #38
0
    def test_record_solver_linear_block_gs(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        # used for analytic derivatives
        self.prob.model.nonlinear_solver.linear_solver = LinearBlockGS()

        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_abs_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_rel_error'] = True
        self.prob.model.nonlinear_solver.linear_solver.recording_options['record_solver_residuals'] = True
        self.prob.model.nonlinear_solver.linear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False)
        t0, t1 = run_driver(self.prob)
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)
        expected_abs_error = 9.109083208861876e-11
        expected_rel_error = 9.114367543620551e-12

        expected_solver_output = [
            {'name': 'px.x', 'values': [0.0]},
            {'name': 'pz.z', 'values': [0.0, 0.0]},
            {'name': 'd1.y1', 'values': [0.00045069]},
            {'name': 'd2.y2', 'values': [-0.00225346]},
            {'name': 'obj_cmp.obj', 'values': [0.00045646]},
            {'name': 'con_cmp1.con1', 'values': [-0.00045069]},
            {'name': 'con_cmp2.con2', 'values': [-0.00225346]},
        ]

        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
예제 #39
0
    def test_record_system(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.prob.model.recording_options['record_inputs'] = True
        self.prob.model.recording_options['record_outputs'] = True
        self.prob.model.recording_options['record_residuals'] = True
        self.prob.model.recording_options['record_metadata'] = True

        self.prob.model.add_recorder(self.recorder)

        d1 = self.prob.model.d1  # instance of SellarDis1withDerivatives, a Group
        d1.add_recorder(self.recorder)

        obj_cmp = self.prob.model.obj_cmp  # an ExecComp
        obj_cmp.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        system_iterations = json.loads(self.system_iterations)

        inputs = [
            {'name': 'd1.z', 'values': [5.0, 2.0]},
            {'name': 'd1.x', 'values': [1.0]},
            {'name': 'd2.z', 'values': [5.0, 2.0]},
            {'name': 'd1.y2', 'values': [12.05848815]}
        ]

        outputs = [
            {'name': 'd1.y1', 'values': [25.58830237]}
        ]

        residuals = [
            {'name': 'd1.y1', 'values': [0.0]}
        ]

        for i in inputs:
            self.assert_array_close(i, system_iterations['inputs'])
        for o in outputs:
            self.assert_array_close(o, system_iterations['outputs'])
        for r in residuals:
            self.assert_array_close(r, system_iterations['residuals'])

        inputs = [
            {'name': 'con_cmp2.y2', 'values': [12.058488150624356]},
            {'name': 'obj_cmp.y1', 'values': [25.58830237000701]},
            {'name': 'obj_cmp.x', 'values': [1.0]},
            {'name': 'obj_cmp.z', 'values': [5.0, 2.0]}
        ]

        outputs = [
            {'name': 'obj_cmp.obj', 'values': [28.58830816]}
        ]

        residuals = [
            {'name': 'obj_cmp.obj', 'values': [0.0]}
        ]

        for i in inputs:
            self.assert_array_close(i, system_iterations['inputs'])
        for o in outputs:
            self.assert_array_close(o, system_iterations['outputs'])
        for r in residuals:
            self.assert_array_close(r, system_iterations['residuals'])
예제 #40
0
    def test_simple_driver_recording(self, m):
        self.setup_endpoints(m)

        if OPT is None:
            raise unittest.SkipTest("pyoptsparse is not installed")

        if OPTIMIZER is None:
            raise unittest.SkipTest(
                "pyoptsparse is not providing SNOPT or SLSQP")

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*'])
        model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*'])
        model.add_subsystem('comp', Paraboloid(), promotes=['*'])
        model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*'])

        model.suppress_solver_output = True

        prob.driver = pyOptSparseDriver()

        prob.driver.add_recorder(self.recorder)
        self.recorder.options['record_desvars'] = True
        self.recorder.options['record_responses'] = True
        self.recorder.options['record_objectives'] = True
        self.recorder.options['record_constraints'] = True

        prob.driver.options['optimizer'] = OPTIMIZER
        if OPTIMIZER == 'SLSQP':
            prob.driver.opt_settings['ACC'] = 1e-9

        model.add_design_var('x', lower=-50.0, upper=50.0)
        model.add_design_var('y', lower=-50.0, upper=50.0)
        model.add_objective('f_xy')
        model.add_constraint('c', upper=-15.0)
        prob.setup(check=False)

        t0, t1 = run_driver(prob)

        prob.cleanup()
        upload(self.filename, self._accepted_token)

        driver_iteration_data = json.loads(self.driver_iteration_data)

        expected_desvars = [{
            'name': 'p1.x',
            'values': [7.1666666]
        }, {
            'name': 'p2.y',
            'values': [-7.8333333]
        }]

        expected_objectives = [{'name': 'comp.f_xy', 'values': [-27.083333]}]

        expected_constraints = [{'name': 'con.c', 'values': [-15.0]}]

        for d in expected_desvars:
            self.assert_array_close(d, driver_iteration_data['desvars'])

        for o in expected_objectives:
            self.assert_array_close(o, driver_iteration_data['objectives'])

        for c in expected_constraints:
            self.assert_array_close(c, driver_iteration_data['constraints'])
예제 #41
0
    def test_record_system(self, m):
        self.setup_endpoints(m)

        self.setup_sellar_model()

        self.recorder.options['record_inputs'] = True
        self.recorder.options['record_outputs'] = True
        self.recorder.options['record_residuals'] = True
        self.recorder.options['record_metadata'] = True

        self.prob.model.add_recorder(self.recorder)

        d1 = self.prob.model.get_subsystem(
            'd1')  # instance of SellarDis1withDerivatives, a Group
        d1.add_recorder(self.recorder)

        obj_cmp = self.prob.model.get_subsystem('obj_cmp')  # an ExecComp
        obj_cmp.add_recorder(self.recorder)

        self.prob.setup(check=False)

        t0, t1 = run_driver(self.prob)

        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        system_iterations = json.loads(self.system_iterations)

        inputs = [{
            'name': 'd1.z',
            'values': [5.0, 2.0]
        }, {
            'name': 'd1.x',
            'values': [1.0]
        }, {
            'name': 'd2.z',
            'values': [5.0, 2.0]
        }, {
            'name': 'd1.y2',
            'values': [12.05848815]
        }]

        outputs = [{'name': 'd1.y1', 'values': [25.58830237]}]

        residuals = [{'name': 'd1.y1', 'values': [0.0]}]

        for i in inputs:
            self.assert_array_close(i, system_iterations['inputs'])
        for o in outputs:
            self.assert_array_close(o, system_iterations['outputs'])
        for r in residuals:
            self.assert_array_close(r, system_iterations['residuals'])

        inputs = [{
            'name': 'con_cmp2.y2',
            'values': [12.058488150624356]
        }, {
            'name': 'obj_cmp.y1',
            'values': [25.58830237000701]
        }, {
            'name': 'obj_cmp.x',
            'values': [1.0]
        }, {
            'name': 'obj_cmp.z',
            'values': [5.0, 2.0]
        }]

        outputs = [{'name': 'obj_cmp.obj', 'values': [28.58830816]}]

        residuals = [{'name': 'obj_cmp.obj', 'values': [0.0]}]

        for i in inputs:
            self.assert_array_close(i, system_iterations['inputs'])
        for o in outputs:
            self.assert_array_close(o, system_iterations['outputs'])
        for r in residuals:
            self.assert_array_close(r, system_iterations['residuals'])
예제 #42
0
    def test_simple_driver_recording(self, m):
        self.setup_endpoints(m)

        if OPT is None:
            raise unittest.SkipTest("pyoptsparse is not installed")

        if OPTIMIZER is None:
            raise unittest.SkipTest("pyoptsparse is not providing SNOPT or SLSQP")

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*'])
        model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*'])
        model.add_subsystem('comp', Paraboloid(), promotes=['*'])
        model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*'])

        model.suppress_solver_output = True

        prob.driver = pyOptSparseDriver()

        prob.driver.add_recorder(self.recorder)
        prob.driver.recording_options['record_desvars'] = True
        prob.driver.recording_options['record_responses'] = True
        prob.driver.recording_options['record_objectives'] = True
        prob.driver.recording_options['record_constraints'] = True

        prob.driver.options['optimizer'] = OPTIMIZER
        if OPTIMIZER == 'SLSQP':
            prob.driver.opt_settings['ACC'] = 1e-9

        model.add_design_var('x', lower=-50.0, upper=50.0)
        model.add_design_var('y', lower=-50.0, upper=50.0)
        model.add_objective('f_xy')
        model.add_constraint('c', upper=-15.0)
        prob.setup(check=False)

        t0, t1 = run_driver(prob)

        prob.cleanup()
        upload(self.filename, self._accepted_token)

        driver_iteration_data = json.loads(self.driver_iteration_data)

        expected_desvars = [
            {'name': 'p1.x', 'values': [7.1666666]},
            {'name': 'p2.y', 'values': [-7.8333333]}
        ]

        expected_objectives = [
            {'name': 'comp.f_xy', 'values': [-27.083333]}
        ]

        expected_constraints = [
            {'name': 'con.c', 'values': [-15.0]}
        ]

        for d in expected_desvars:
            self.assert_array_close(d, driver_iteration_data['desvars'])

        for o in expected_objectives:
            self.assert_array_close(o, driver_iteration_data['objectives'])

        for c in expected_constraints:
            self.assert_array_close(c, driver_iteration_data['constraints'])
예제 #43
0
    def test_record_driver_system_solver(self, m):
        # Test what happens when all three types are recorded:
        #    Driver, System, and Solver
        self.setup_endpoints(m)
        if OPT is None:
            raise unittest.SkipTest("pyoptsparse is not installed")

        if OPTIMIZER is None:
            raise unittest.SkipTest("pyoptsparse is not providing SNOPT or SLSQP")

        self.setup_sellar_grouped_model()

        self.prob.driver = pyOptSparseDriver()
        self.prob.driver.options['optimizer'] = OPTIMIZER
        self.prob.driver.opt_settings['ACC'] = 1e-9

        # Add recorders
        # Driver
        self.prob.driver.recording_options['record_metadata'] = True
        self.prob.driver.recording_options['record_desvars'] = True
        self.prob.driver.recording_options['record_responses'] = True
        self.prob.driver.recording_options['record_objectives'] = True
        self.prob.driver.recording_options['record_constraints'] = True
        self.prob.driver.add_recorder(self.recorder)
        # System
        pz = self.prob.model.pz  # IndepVarComp which is an ExplicitComponent
        pz.recording_options['record_metadata'] = True
        pz.recording_options['record_inputs'] = True
        pz.recording_options['record_outputs'] = True
        pz.recording_options['record_residuals'] = True
        pz.add_recorder(self.recorder)
        # Solver
        mda = self.prob.model.mda
        mda.nonlinear_solver.recording_options['record_metadata'] = True
        mda.nonlinear_solver.recording_options['record_abs_error'] = True
        mda.nonlinear_solver.recording_options['record_rel_error'] = True
        mda.nonlinear_solver.recording_options['record_solver_residuals'] = True
        mda.nonlinear_solver.add_recorder(self.recorder)

        self.prob.setup(check=False, mode='rev')
        t0, t1 = run_driver(self.prob)
        self.prob.cleanup()
        upload(self.filename, self._accepted_token)

        # Driver recording test
        coordinate = [0, 'SLSQP', (7, )]

        expected_desvars = [
            {'name': 'pz.z', 'values': self.prob['pz.z']},
            {'name': 'px.x', 'values': self.prob['px.x']}
        ]

        expected_objectives = [
            {'name': 'obj_cmp.obj', 'values': self.prob['obj_cmp.obj']}
        ]

        expected_constraints = [
            {'name': 'con_cmp1.con1', 'values': self.prob['con_cmp1.con1']},
            {'name': 'con_cmp2.con2', 'values': self.prob['con_cmp2.con2']}
        ]

        driver_iteration_data = json.loads(self.driver_iteration_data)

        for d in expected_desvars:
            self.assert_array_close(d, driver_iteration_data['desvars'])

        for o in expected_objectives:
            self.assert_array_close(o, driver_iteration_data['objectives'])

        for c in expected_constraints:
            self.assert_array_close(c, driver_iteration_data['constraints'])

        # System recording test
        expected_inputs = []
        expected_outputs = [{'name': 'pz.z', 'values': [1.978467, -1.64641e-13]}]
        expected_residuals = [{'name': 'pz.z', 'values': [0.0, 0.0]}]

        system_iteration = json.loads(self.system_iterations)

        self.assertEqual(expected_inputs, system_iteration['inputs'])

        for o in expected_outputs:
            self.assert_array_close(o, system_iteration['outputs'])

        for r in expected_residuals:
            self.assert_array_close(r, system_iteration['residuals'])

        # Solver recording test
        expected_abs_error = 3.90598e-11
        expected_rel_error = 2.0701941158e-06

        expected_solver_output = [
            {'name': 'mda.d2.y2', 'values': [3.75610598]},
            {'name': 'mda.d1.y1', 'values': [3.16]}
        ]

        expected_solver_residuals = [
            {'name': 'mda.d2.y2', 'values': [0.0]},
            {'name': 'mda.d1.y1', 'values': [0.0]}
        ]

        solver_iteration = json.loads(self.solver_iterations)

        np.testing.assert_almost_equal(expected_abs_error, solver_iteration['abs_err'], decimal=5)
        np.testing.assert_almost_equal(expected_rel_error, solver_iteration['rel_err'], decimal=5)

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])

        for r in expected_solver_residuals:
            self.assert_array_close(r, solver_iteration['solver_residuals'])