def test_1d_1fi_cokriging(self): # CoKrigingSurrogate with one fidelity could be used as a KrigingSurrogate # Same test as for KrigingSurrogate... well with predicted test value adjustment x = np.array([[0.05], [.25], [0.61], [0.95]]) y = np.array([0.738513784857542, -0.210367746201974, -0.489015457891476, 12.3033138316612]) krig1 = MultiFiCoKrigingSurrogate() krig1.train(x, y) new_x = np.array([0.5]) mu, sigma = krig1.predict(x[0]) assert_near_equal(mu, [[y[0]]], 1e-4) assert_near_equal(sigma, [[0.]], 1e-4) mu, sigma = krig1.predict(new_x) assert_near_equal(mu, [[-2.0279]], 1e-3) assert_near_equal(sigma, [[1.3408]], 1e-3) # Test with theta setting instead of estimation krig2 = MultiFiCoKrigingSurrogate(theta=0.1, normalize=False) krig2.train(x, y) mu, sigma = krig2.predict(x[0]) assert_near_equal(mu, [[y[0]]], 1e-4) assert_near_equal(sigma, [[.0]], 1e-4) mu, sigma = krig2.predict(new_x) assert_near_equal(mu, [[-1.2719]], 1e-3) assert_near_equal(sigma, [[0.0439]], 1e-3)
def test_1d_1fi_cokriging(self): # CoKrigingSurrogate with one fidelity could be used as a KrigingSurrogate # Same test as for KrigingSurrogate... well with predicted test value adjustment x = array([[0.05], [.25], [0.61], [0.95]]) y = array([ 0.738513784857542, -0.210367746201974, -0.489015457891476, 12.3033138316612 ]) krig1 = MultiFiCoKrigingSurrogate() krig1.train(x, y) new_x = array([0.5]) mu, sigma = krig1.predict(x[0]) assert_rel_error(self, mu, y[0], 1e-4) assert_rel_error(self, sigma, 0., 1e-4) mu, sigma = krig1.predict(new_x) assert_rel_error(self, mu, -2.0279, 1e-3) assert_rel_error(self, sigma, 1.3408, 1e-3) # Test with theta setting instead of estimation krig2 = MultiFiCoKrigingSurrogate(theta=0.1) krig2.train(x, y) mu, sigma = krig2.predict(x[0]) assert_rel_error(self, mu, y[0], 1e-4) assert_rel_error(self, sigma, .0, 1e-4) mu, sigma = krig2.predict(new_x) assert_rel_error(self, mu, -1.2719, 1e-3) assert_rel_error(self, sigma, 0.0439, 1e-3)
def test_1d_1fi_cokriging(self): # CoKrigingSurrogate with one fidelity could be used as a KrigingSurrogate # Same test as for KrigingSurrogate... well with predicted test value adjustment x = array([[0.05], [.25], [0.61], [0.95]]) y = array([0.738513784857542, -0.210367746201974, -0.489015457891476, 12.3033138316612]) krig1 = MultiFiCoKrigingSurrogate() krig1.train(x, y) new_x = array([0.5]) mu, sigma = krig1.predict(x[0]) assert_rel_error(self, mu, y[0], 1e-4) assert_rel_error(self, sigma, 0., 1e-4) mu, sigma = krig1.predict(new_x) assert_rel_error(self, mu, -2.0279, 1e-3) assert_rel_error(self, sigma, 1.3408, 1e-3) # Test with theta setting instead of estimation krig2 = MultiFiCoKrigingSurrogate(theta=0.1) krig2.train(x, y) mu, sigma = krig2.predict(x[0]) assert_rel_error(self , mu, y[0], 1e-4) assert_rel_error(self, sigma, .0, 1e-4) mu, sigma = krig2.predict(new_x) assert_rel_error(self, mu, -1.2719, 1e-3) assert_rel_error(self, sigma, 0.0439, 1e-3)
def test_2d_1fi_cokriging(self): # CoKrigingSurrogate with one fidelity could be used as a KrigingSurrogate # Same test as for KrigingSurrogate... well with predicted test value adjustment def branin(x): y = (x[1]-(5.1/(4.*pi**2.))*x[0]**2.+5.*x[0]/pi-6.)**2.+10.*(1.-1./(8.*pi))*cos(x[0])+10. return y x = array([[-2., 0.], [-0.5, 1.5], [1., 3.], [8.5, 4.5], [-3.5, 6.], [4., 7.5], [-5., 9.], [5.5, 10.5], [10., 12.], [7., 13.5], [2.5, 15.]]) y = array([branin(case) for case in x]) krig1 = MultiFiCoKrigingSurrogate() krig1.train(x, y) mu, sigma = krig1.predict([-2., 0.]) assert_rel_error(self, mu, branin(x[0]), 1e-5) assert_rel_error(self, sigma, 0., 1e-5) mu, sigma = krig1.predict([5., 5.]) assert_rel_error(self, mu, 22, 1) assert_rel_error(self, sigma, 13, 1) # Test with theta setting instead of estimation krig2 = MultiFiCoKrigingSurrogate(theta=[0.1]) krig1.train(x, y) mu, sigma = krig1.predict([-2., 0.]) assert_rel_error(self, mu, branin(x[0]), 1e-5) assert_rel_error(self, sigma, 0., 1e-5) mu, sigma = krig1.predict([5., 5.]) assert_rel_error(self, mu, 22, 1) assert_rel_error(self, sigma, 13, 1)
def test_normalization(self): # This dataset is ill conditioned if not normalized. size = 100 x = np.random.random((size, 1)) y = np.random.random(size) krig = MultiFiCoKrigingSurrogate(normalize=True) krig.train(x, y) # Make sure we aren't singular. We will get a few warnings during # training. krig.predict(0.5)
assert_near_equal(sigma, [[0.]], 0.02) def test_2d_1fi_cokriging(self): # CoKrigingSurrogate with one fidelity could be used as a KrigingSurrogate # Same test as for KrigingSurrogate... well with predicted test value adjustment def branin(x): y = (x[1]-(5.1/(4.*np.pi**2.))*x[0]**2.+5.*x[0]/np.pi-6.)**2.+10.*(1.-1./(8.*np.pi))*np.cos(x[0])+10. return y x = np.array([[-2., 0.], [-0.5, 1.5], [1., 3.], [8.5, 4.5], [-3.5, 6.], [4., 7.5], [-5., 9.], [5.5, 10.5], [10., 12.], [7., 13.5], [2.5, 15.]]) y = np.array([branin(case) for case in x]) krig1 = MultiFiCoKrigingSurrogate() krig1.train(x, y) mu, sigma = krig1.predict([-2., 0.]) assert_near_equal(mu, [[branin(x[0])]], 1e-5) assert_near_equal(sigma, [[0.]], 1e-5) mu, sigma = krig1.predict([5., 5.]) assert_near_equal(mu, [[22]], 1) assert_near_equal(sigma, [[13]], 1) # Test with theta setting instead of estimation krig2 = MultiFiCoKrigingSurrogate(theta=[0.1]) krig1.train(x, y) mu, sigma = krig1.predict([-2., 0.]) assert_near_equal(mu, [[branin(x[0])]], 1e-5)