def test_unequal_training_outputs(self): meta = MetaModel() meta.add_param('x', 0.) meta.add_param('y', 0.) meta.add_output('f', 0.) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta) prob.setup(check=False) prob['meta.train:x'] = [1.0, 1.0, 1.0, 1.0] prob['meta.train:y'] = [1.0, 2.0, 3.0, 4.0] prob['meta.train:f'] = [1.0, 1.0] prob['meta.x'] = 1.0 prob['meta.y'] = 1.0 with self.assertRaises(RuntimeError) as cm: prob.run() expected = "MetaModel: Each variable must have the same number" \ " of training points. Expected 4 but found" \ " 2 points for 'f'." self.assertEqual(str(cm.exception), expected)
def test_sin_metamodel(self): # create a MetaModel for Sin and add it to a Problem sin_mm = MetaModel() sin_mm.add_param('x', 0.) sin_mm.add_output('f_x', 0.) prob = Problem(Group()) prob.root.add('sin_mm', sin_mm) # check that missing surrogate is detected in check_setup stream = cStringIO() prob.setup(out_stream=stream) msg = ("No default surrogate model is defined and the " "following outputs do not have a surrogate model:\n" "['f_x']\n" "Either specify a default_surrogate, or specify a " "surrogate model for all outputs.") self.assertTrue(msg in stream.getvalue()) # check that output with no specified surrogate gets the default sin_mm.default_surrogate = FloatKrigingSurrogate() prob.setup(check=False) surrogate = prob.root.unknowns.metadata('sin_mm.f_x').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate), 'sin_mm.f_x should get the default surrogate') # train the surrogate and check predicted value prob['sin_mm.train:x'] = np.linspace(0, 10, 200) prob['sin_mm.train:f_x'] = .5 * np.sin(prob['sin_mm.train:x']) prob['sin_mm.x'] = 2.22 prob.run() self.assertAlmostEqual(prob['sin_mm.f_x'], .5 * np.sin(prob['sin_mm.x']), places=5)
def test_array_outputs(self): meta = MetaModel() meta.add_param('x', np.zeros((2, 2))) meta.add_output('y', np.zeros(2, )) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta) prob.setup(check=False) prob['meta.train:x'] = [[[1.0, 1.0], [1.0, 1.0]], [[2.0, 1.0], [1.0, 1.0]], [[1.0, 2.0], [1.0, 1.0]], [[1.0, 1.0], [2.0, 1.0]], [[1.0, 1.0], [1.0, 2.0]]] prob['meta.train:y'] = [[3.0, 1.0], [2.0, 4.0], [1.0, 7.0], [6.0, -3.0], [-2.0, 3.0]] prob['meta.x'] = [[1.0, 2.0], [1.0, 1.0]] prob.run() assert_rel_error(self, prob['meta.y'], np.array([1.0, 7.0]), .00001)
def test_vector_inputs(self): meta = MetaModel() meta.add_param('x', np.zeros(4)) meta.add_output('y1', 0.) meta.add_output('y2', 0.) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta) prob.setup(check=False) prob['meta.train:x'] = [[1.0, 1.0, 1.0, 1.0], [2.0, 1.0, 1.0, 1.0], [1.0, 2.0, 1.0, 1.0], [1.0, 1.0, 2.0, 1.0], [1.0, 1.0, 1.0, 2.0]] prob['meta.train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0] prob['meta.train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0] prob['meta.x'] = [1.0, 2.0, 1.0, 1.0] prob.run() assert_rel_error(self, prob['meta.y1'], 1.0, .00001) assert_rel_error(self, prob['meta.y2'], 7.0, .00001)
def test_derivatives(self): meta = MetaModel() meta.add_param('x', 0.) meta.add_output('f', 0.) meta.default_surrogate = FloatKrigingSurrogate() prob = Problem(Group()) prob.root.add('meta', meta, promotes=['x']) prob.root.add('p', ParamComp('x', 0.), promotes=['x']) prob.setup(check=False) prob['meta.train:x'] = [0., .25, .5, .75, 1.] prob['meta.train:f'] = [1., .75, .5, .25, 0.] prob['x'] = 0.125 prob.run() stream = cStringIO() prob.check_partial_derivatives(out_stream=stream) abs_errors = findall('Absolute Error \(.+\) : (.+)', stream.getvalue()) self.assertTrue(len(abs_errors) > 0) for match in abs_errors: abs_error = float(match) self.assertTrue(abs_error < 1e-6)
def test_basics(self): # create a metamodel component mm = MetaModel() mm.add_param('x1', 0.) mm.add_param('x2', 0.) mm.add_output('y1', 0.) mm.add_output('y2', 0., surrogate=FloatKrigingSurrogate()) mm.default_surrogate = ResponseSurface() # add metamodel to a problem prob = Problem(root=Group()) prob.root.add('mm', mm) prob.setup(check=False) # check that surrogates were properly assigned surrogate = prob.root.unknowns.metadata('mm.y1').get('surrogate') self.assertTrue(isinstance(surrogate, ResponseSurface)) surrogate = prob.root.unknowns.metadata('mm.y2').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate)) # populate training data prob['mm.train:x1'] = [1.0, 2.0, 3.0] prob['mm.train:x2'] = [1.0, 3.0, 4.0] prob['mm.train:y1'] = [3.0, 2.0, 1.0] prob['mm.train:y2'] = [1.0, 4.0, 7.0] # run problem for provided data point and check prediction prob['mm.x1'] = 2.0 prob['mm.x2'] = 3.0 self.assertTrue(mm.train) # training will occur before 1st run prob.run() assert_rel_error(self, prob['mm.y1'], 2.0, .00001) assert_rel_error(self, prob['mm.y2'], 4.0, .00001) # run problem for interpolated data point and check prediction prob['mm.x1'] = 2.5 prob['mm.x2'] = 3.5 self.assertFalse(mm.train) # training will not occur before 2nd run prob.run() assert_rel_error(self, prob['mm.y1'], 1.5934, .001) # change default surrogate, re-setup and check that metamodel re-trains mm.default_surrogate = FloatKrigingSurrogate() prob.setup(check=False) surrogate = prob.root.unknowns.metadata('mm.y1').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate)) self.assertTrue(mm.train) # training will occur after re-setup mm.warm_restart = True # use existing training data prob['mm.x1'] = 2.5 prob['mm.x2'] = 3.5 prob.run() assert_rel_error(self, prob['mm.y1'], 1.4609, .001)