def _load_om_inverse_head_mat(self, file_name): """ Load a previously stored inverse head matrix into an OpenMEEG SymMatrix object. """ inverse_head_martix = om.SymMatrix() inverse_head_martix.load(file_name) return inverse_head_martix
v2 = om.Vertex(0., 1., 0., 1) v3 = om.Vertex(0., 0., 1., 2) #print v1.norm() #print (v1 + v2).norm() normal = om.Vect3(1., 0., 0.) t = om.Triangle(v1, v2, v3) hm_file = subject + '.hm' hm.save(hm_file) ssm_file = subject + '.ssm' ssm.save(ssm_file) m1 = om.SymMatrix() m1.load(hm_file) #print m1(0, 0) #print m1.nlin() #print m1.ncol() m2 = om.Matrix() m2.load(ssm_file) #m2.setvalue(2,3,-0.2) # m2(2,3)=-0.2 #print m2(2,3) #print m2(0, 0) #print m2.nlin() #print m2.ncol() ############################################################################### # Numpy interface
############################################################################### # create a dir for leadfields and tmp if not op.exists("tmp"): import os os.mkdir('tmp') if not op.exists("leadfields"): import os os.mkdir('leadfields') # Compute Leadfields gauss_order = 3 use_adaptive_integration = True dipole_in_cortex = True if op.exists("tmp/hmi.mat"): hminv = om.SymMatrix("tmp/hmi.mat") print("HM inverse loaded from ", "tmp/hmi.mat") else: hm = om.HeadMat(geom, gauss_order) hm.invert() hm.save("tmp/hmi.mat") hminv = hm # hminv = hm.inverse() # to also test the adjoint method: comment the 3 # previous lines, and uncomment this line, and the two others containing # 'adjoint' if op.exists("tmp/dsm.mat"): dsm = om.Matrix("tmp/dsm.mat") print("DSM loaded from ", "tmp/dsm.mat") else: dsm = om.DipSourceMat(geom, dipoles, gauss_order, use_adaptive_integration,