예제 #1
0
def classical(group, src_filter, gsims, param, monitor=Monitor()):
    """
    Compute the hazard curves for a set of sources belonging to the same
    tectonic region type for all the GSIMs associated to that TRT.
    The arguments are the same as in :func:`calc_hazard_curves`, except
    for ``gsims``, which is a list of GSIM instances.

    :returns:
        a dictionary with keys pmap, calc_times, rup_data, extra
    """
    if not hasattr(src_filter, 'sitecol'):  # do not filter
        src_filter = SourceFilter(src_filter, {})

    # Get the parameters assigned to the group
    src_mutex = getattr(group, 'src_interdep', None) == 'mutex'
    cluster = getattr(group, 'cluster', None)
    trts = set()
    maxradius = 0
    for src in group:
        if not src.num_ruptures:
            # src.num_ruptures may not be set, so it is set here
            src.num_ruptures = src.count_ruptures()
        # set the proper TOM in case of a cluster
        if cluster:
            src.temporal_occurrence_model = FatedTOM(time_span=1)
        trts.add(src.tectonic_region_type)
        if hasattr(src, 'radius'):  # for prefiltered point sources
            maxradius = max(maxradius, src.radius)

    param['maximum_distance'] = src_filter.integration_distance
    [trt] = trts  # there must be a single tectonic region type
    cmaker = ContextMaker(trt, gsims, param, monitor)
    try:
        cmaker.tom = group.temporal_occurrence_model
    except AttributeError:  # got a list of sources, not a group
        time_span = param.get('investigation_time')  # None for nonparametric
        cmaker.tom = PoissonTOM(time_span) if time_span else None
    if cluster:
        cmaker.tom = FatedTOM(time_span=1)
    pmap, rup_data, calc_times = PmapMaker(cmaker, src_filter, group).make()
    extra = {}
    extra['task_no'] = getattr(monitor, 'task_no', 0)
    extra['trt'] = trt
    extra['source_id'] = src.source_id
    extra['grp_id'] = src.grp_id
    extra['maxradius'] = maxradius
    group_probability = getattr(group, 'grp_probability', None)
    if src_mutex and group_probability:
        pmap *= group_probability

    if cluster:
        tom = getattr(group, 'temporal_occurrence_model')
        pmap = _cluster(param['imtls'], tom, gsims, pmap)
    return dict(pmap=pmap,
                calc_times=calc_times,
                rup_data=rup_data,
                extra=extra)
예제 #2
0
def calc_hazard_curve(site1, src, gsims_by_trt, oqparam):
    """
    :param site1: site collection with a single site
    :param src: a seismic source object
    :param gsims_by_trt: a dictionary trt -> gsims
    :param oqparam: an object with attributes .maximum_distance, .imtls
    :returns: a ProbabilityCurve object
    """
    assert len(site1) == 1, site1
    trt = src.tectonic_region_type
    gsims = gsims_by_trt['*'] if '*' in gsims_by_trt else gsims_by_trt[trt]
    cmaker = ContextMaker(trt, gsims, vars(oqparam))
    srcfilter = SourceFilter(site1, oqparam.maximum_distance)
    pmap, rup_data, calc_times, extra = PmapMaker(cmaker, srcfilter,
                                                  [src]).make()
    return pmap[0]  # pcurve with shape (L, G)
예제 #3
0
def calc_hazard_curve(site1, src, gsims, oqparam):
    """
    :param site1: site collection with a single site
    :param src: a seismic source object
    :param gsims: a list of GSIM objects
    :param oqparam: an object with attributes .maximum_distance, .imtls
    :returns: a ProbabilityCurve object
    """
    assert len(site1) == 1, site1
    trt = src.tectonic_region_type
    cmaker = ContextMaker(trt, gsims, vars(oqparam))
    srcfilter = SourceFilter(site1, oqparam.maximum_distance)
    pmap, rup_data, calc_times = PmapMaker(cmaker, srcfilter, [src]).make()
    if not pmap:  # filtered away
        zero = numpy.zeros((oqparam.imtls.size, len(gsims)))
        return ProbabilityCurve(zero)
    return pmap[0]  # pcurve with shape (L, G) on site 0
예제 #4
0
def calc_hazard_curve(site1, src, gsims, oqparam, monitor=Monitor()):
    """
    :param site1: site collection with a single site
    :param src: a seismic source object
    :param gsims: a list of GSIM objects
    :param oqparam: an object with attributes .maximum_distance, .imtls
    :param monitor: a Monitor instance (optional)
    :returns: a ProbabilityCurve object
    """
    assert len(site1) == 1, site1
    trt = src.tectonic_region_type
    cmaker = ContextMaker(trt, gsims, vars(oqparam), monitor)
    cmaker.tom = src.temporal_occurrence_model
    srcfilter = SourceFilter(site1, oqparam.maximum_distance)
    pmap = PmapMaker(cmaker, srcfilter, [src]).make()['pmap']
    if not pmap:  # filtered away
        zero = numpy.zeros((oqparam.imtls.size, len(gsims)))
        return ProbabilityCurve(zero)
    return pmap[0]  # pcurve with shape (L, G) on site 0
예제 #5
0
def classical(group, sitecol, cmaker):
    """
    Compute the hazard curves for a set of sources belonging to the same
    tectonic region type for all the GSIMs associated to that TRT.
    The arguments are the same as in :func:`calc_hazard_curves`, except
    for ``gsims``, which is a list of GSIM instances.

    :returns:
        a dictionary with keys pmap, source_data, rup_data, extra
    """
    src_filter = SourceFilter(sitecol, cmaker.maximum_distance)
    cluster = getattr(group, 'cluster', None)
    trts = set()
    for src in group:
        if not src.num_ruptures:
            # src.num_ruptures may not be set, so it is set here
            src.num_ruptures = src.count_ruptures()
        # set the proper TOM in case of a cluster
        if cluster:
            src.temporal_occurrence_model = FatedTOM(time_span=1)
        trts.add(src.tectonic_region_type)
    [trt] = trts  # there must be a single tectonic region type
    if cmaker.trt != '*':
        assert trt == cmaker.trt, (trt, cmaker.trt)
    try:
        cmaker.tom = group.temporal_occurrence_model
    except AttributeError:  # got a list of sources, not a group
        time_span = cmaker.investigation_time  # None for nonparametric
        cmaker.tom = PoissonTOM(time_span) if time_span else None
    if cluster:
        cmaker.tom = FatedTOM(time_span=1)
    dic = PmapMaker(cmaker, src_filter, group).make()
    if cluster:
        tom = getattr(group, 'temporal_occurrence_model')
        dic['pmap'] = _cluster(cmaker.imtls, tom, cmaker.gsims, dic['pmap'])
    return dic