예제 #1
0
def event_based_risk(riskinputs, param, monitor):
    """
    :param riskinputs:
        :class:`openquake.risklib.riskinput.RiskInput` objects
    :param param:
        a dictionary of parameters
    :param monitor:
        :class:`openquake.baselib.performance.Monitor` instance
    :returns:
        a dictionary of numpy arrays of shape (L, R)
    """
    crmodel = monitor.read('crmodel')
    L = len(crmodel.lti)
    tempname = param['tempname']
    for ri in riskinputs:
        with monitor('getting hazard'):
            ri.hazard_getter.init()
            hazard = ri.hazard_getter.get_hazard()
        mon = monitor('build risk curves', measuremem=False)
        A = len(ri.aids)
        R = ri.hazard_getter.num_rlzs
        try:
            avg = numpy.zeros((A, R, L), F32)
        except MemoryError:
            raise MemoryError('Building array avg of shape (%d, %d, %d)' %
                              (A, R, L))
        result = dict(aids=ri.aids, avglosses=avg)
        acc = AccumDict()  # accumulator eidx -> agglosses
        aid2idx = {aid: idx for idx, aid in enumerate(ri.aids)}
        if 'builder' in param:
            builder = param['builder']
            P = len(builder.return_periods)
            all_curves = numpy.zeros((A, R, P), builder.loss_dt)
        # update the result dictionary and the agg array with each output
        for out in ri.gen_outputs(crmodel, monitor, tempname, hazard):
            if len(out.eids) == 0:  # this happens for sites with no events
                continue
            r = out.rlzi
            agglosses = numpy.zeros((len(out.eids), L), F32)
            for l, loss_type in enumerate(crmodel.loss_types):
                loss_ratios = out[loss_type]
                if loss_ratios is None:  # for GMFs below the minimum_intensity
                    continue
                avalues = riskmodels.get_values(loss_type, ri.assets)
                for a, asset in enumerate(ri.assets):
                    aval = avalues[a]
                    aid = asset['ordinal']
                    idx = aid2idx[aid]
                    ratios = loss_ratios[a]  # length E

                    # average losses
                    avg[idx, r,
                        l] = (ratios.sum(axis=0) * param['ses_ratio'] * aval)
                    # agglosses
                    agglosses[:, l] += ratios * aval
                    if 'builder' in param:
                        with mon:  # this is the heaviest part
                            try:
                                all_curves[idx, r][loss_type] = (
                                    builder.build_curve(aval, ratios, r))
                            except ValueError:
                                pass  # not enough event to compute the curve

            # NB: I could yield the agglosses per output, but then I would
            # have millions of small outputs with big data transfer and slow
            # saving time
            acc += dict(zip(out.eids, agglosses))

        if 'builder' in param:
            clp = param['conditional_loss_poes']
            result['curves-rlzs'], result['curves-stats'] = builder.pair(
                all_curves, param['stats'])
            if R > 1 and param['individual_curves'] is False:
                del result['curves-rlzs']
            if clp:
                result['loss_maps-rlzs'], result['loss_maps-stats'] = (
                    builder.build_maps(all_curves, clp, param['stats']))
                if R > 1 and param['individual_curves'] is False:
                    del result['loss_maps-rlzs']

        # store info about the GMFs, must be done at the end
        result['agglosses'] = (numpy.array(list(acc)),
                               numpy.array(list(acc.values())))
        yield result
예제 #2
0
def event_based_risk(riskinputs, riskmodel, param, monitor):
    """
    :param riskinputs:
        :class:`openquake.risklib.riskinput.RiskInput` objects
    :param riskmodel:
        a :class:`openquake.risklib.riskinput.CompositeRiskModel` instance
    :param param:
        a dictionary of parameters
    :param monitor:
        :class:`openquake.baselib.performance.Monitor` instance
    :returns:
        a dictionary of numpy arrays of shape (L, R)
    """
    L = len(riskmodel.lti)
    epspath = param['epspath']
    for ri in riskinputs:
        with monitor('getting hazard'):
            ri.hazard_getter.init()
            hazard = ri.hazard_getter.get_hazard()
        mon = monitor('build risk curves', measuremem=False)
        A = len(ri.aids)
        R = ri.hazard_getter.num_rlzs
        try:
            avg = numpy.zeros((A, R, L), F32)
        except MemoryError:
            raise MemoryError(
                'Building array avg of shape (%d, %d, %d)' % (A, R, L))
        result = dict(aids=ri.aids, avglosses=avg)
        acc = AccumDict()  # accumulator eidx -> agglosses
        aid2idx = {aid: idx for idx, aid in enumerate(ri.aids)}
        if 'builder' in param:
            builder = param['builder']
            P = len(builder.return_periods)
            all_curves = numpy.zeros((A, R, P), builder.loss_dt)
        # update the result dictionary and the agg array with each output
        for out in riskmodel.gen_outputs(ri, monitor, epspath, hazard):
            if len(out.eids) == 0:  # this happens for sites with no events
                continue
            r = out.rlzi
            agglosses = numpy.zeros((len(out.eids), L), F32)
            for l, loss_type in enumerate(riskmodel.loss_types):
                loss_ratios = out[loss_type]
                if loss_ratios is None:  # for GMFs below the minimum_intensity
                    continue
                avalues = riskmodels.get_values(loss_type, ri.assets)
                for a, asset in enumerate(ri.assets):
                    aval = avalues[a]
                    aid = asset['ordinal']
                    idx = aid2idx[aid]
                    ratios = loss_ratios[a]  # length E

                    # average losses
                    avg[idx, r, l] = (
                        ratios.sum(axis=0) * param['ses_ratio'] * aval)

                    # agglosses
                    agglosses[:, l] += ratios * aval
                    if 'builder' in param:
                        with mon:  # this is the heaviest part
                            all_curves[idx, r][loss_type] = (
                                builder.build_curve(aval, ratios, r))

            # NB: I could yield the agglosses per output, but then I would
            # have millions of small outputs with big data transfer and slow
            # saving time
            acc += dict(zip(out.eids, agglosses))

        if 'builder' in param:
            clp = param['conditional_loss_poes']
            result['curves-rlzs'], result['curves-stats'] = builder.pair(
                all_curves, param['stats'])
            if R > 1 and param['individual_curves'] is False:
                del result['curves-rlzs']
            if clp:
                result['loss_maps-rlzs'], result['loss_maps-stats'] = (
                    builder.build_maps(all_curves, clp, param['stats']))
                if R > 1 and param['individual_curves'] is False:
                    del result['loss_maps-rlzs']

        # store info about the GMFs, must be done at the end
        result['agglosses'] = (numpy.array(list(acc)),
                               numpy.array(list(acc.values())))
        yield result