max_item=train_dataset.max_item(), dim_embed=50, opt='Adam', sess_config=None, l2_reg=0.1) sampler = PairwiseSampler(batch_size=batch_size, dataset=train_dataset, num_process=5) model_trainer = ImplicitModelTrainer(batch_size=batch_size, test_batch_size=test_batch_size, train_dataset=train_dataset, model=cml_model, sampler=sampler, eval_save_prefix="cml-citeulike") auc_evaluator = AUC() recall_evaluator = Recall(recall_at=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) precision_evaluator = Precision( precision_at=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) ndcg_evaluator = NDCG(ndcg_at=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) cml_model.load("cml-citeulike") model_trainer._eval_manager = ImplicitEvalManager(evaluators=[ auc_evaluator, recall_evaluator, ndcg_evaluator, precision_evaluator ]) model_trainer._num_negatives = 200 model_trainer._exclude_positives([test_dataset]) model_trainer._sample_negatives(seed=10) model_trainer._eval_save_prefix = "cml-citeulike-test" model_trainer._evaluate_partial(test_dataset)
wcml_model = WCML(batch_size=batch_size, max_user=train_dataset.max_user(), max_item=train_dataset.max_item(), dim_embed=50, neg_num=5, l2_reg=0.001, opt='Adam', sess_config=None) sampler = NPairwiseSampler(batch_size=batch_size, dataset=train_dataset, negativenum=5, num_process=4) model_trainer = ImplicitModelTrainer(batch_size=batch_size, test_batch_size=test_batch_size, train_dataset=train_dataset, model=wcml_model, sampler=sampler, eval_save_prefix="wcml-yahoo", item_serving_size=500) auc_evaluator = AUC() wcml_model.load("wcml-yahoo") model_trainer._eval_manager = ImplicitEvalManager(evaluators=[auc_evaluator]) model_trainer._num_negatives = 300 model_trainer._exclude_positives([train_dataset, val_dataset]) model_trainer._sample_negatives(seed=10) model_trainer._eval_save_prefix = "wcml-yahoo-val" model_trainer._evaluate_partial(val_dataset)