import openturns as ot from matplotlib import pyplot as plt from openturns.viewer import View ot.RandomGenerator.SetSeed(0) factory = ot.GumbelCopulaFactory() ref = factory.build() dimension = ref.getDimension() if dimension <= 2: sample = ref.getSample(50) distribution = factory.build(sample) if dimension == 1: distribution.setDescription(['$t$']) pdf_graph = distribution.drawPDF(256) cloud = ot.Cloud(sample, ot.Sample(sample.getSize(), 1)) cloud.setColor('blue') cloud.setPointStyle('fcircle') pdf_graph.add(cloud) fig = plt.figure(figsize=(10, 4)) plt.suptitle(str(distribution)) pdf_axis = fig.add_subplot(111) View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False) else: sample = ref.getSample(500) distribution.setDescription(['$t_0$', '$t_1$']) pdf_graph = distribution.drawPDF([256] * 2) cloud = ot.Cloud(sample) cloud.setColor('red') cloud.setPointStyle('fcircle') pdf_graph.add(cloud) fig = plt.figure(figsize=(10, 4)) plt.suptitle(str(distribution))
sobol.setReplicationSize(3) sobol.setBlockSize(1) sobol.setSeed(2) sobol.setInterestVariables(['y0', 'y1']) myStudy.add(sobol) # 4-b SRC ## src = persalys.SRCAnalysis('SRC', model1) src.setSimulationsNumber(20) src.setSeed(2) src.setInterestVariables(['y0', 'y1']) myStudy.add(src) # 7- data analysis ## dataAnalysis = persalys.DataAnalysis('DataAnalysis', model3) myStudy.add(dataAnalysis) # 8- Marginals inference ## inference = persalys.InferenceAnalysis('inference', model3) inference.setInterestVariables(['x_0', 'x_3']) factories = [ot.NormalFactory(), ot.GumbelFactory()] inference.setDistributionsFactories('x_3', factories) inference.setLevel(0.1) myStudy.add(inference) # 9- Copula inference ## copulaInference = persalys.CopulaInferenceAnalysis('copulaInference', model3) factories = [ot.NormalCopulaFactory(), ot.GumbelCopulaFactory()] copulaInference.setDistributionsFactories(['x_0', 'x_3'], factories) myStudy.add(copulaInference)