def test_specific_format_for_scalar_presenter_with_ignore_formatting(
         self, mocker):
     mock_write_scalar_res = mocker.patch(
         'openvino.tools.accuracy_checker.presenters.write_scalar_result'
     )  # type: MagicMock
     result = EvaluationResult(name='vector_metric',
                               metric_type='metric',
                               evaluated_value=[0.456],
                               reference_value=None,
                               abs_threshold=None,
                               rel_threshold=None,
                               meta={
                                   'scale': 0.5,
                                   'postfix': 'km/h',
                                   'data_format': '{:.4f}'
                               },
                               profiling_file=None)
     presenter = ScalarPrintPresenter()
     presenter.write_result(result, ignore_results_formatting=True)
     mock_write_scalar_res.assert_called_once_with(np.mean(
         result.evaluated_value),
                                                   result.name,
                                                   result.reference_value,
                                                   result.abs_threshold,
                                                   result.rel_threshold,
                                                   postfix=' ',
                                                   scale=1,
                                                   result_format='{}')
 def test_vector_presenter_with_vector_data_contain_one_element(
         self, mocker):
     mock_write_scalar_res = mocker.patch(
         'openvino.tools.accuracy_checker.presenters.write_scalar_result'
     )  # type: MagicMock
     result = EvaluationResult(name='scalar_metric',
                               metric_type='metric',
                               evaluated_value=[0.4],
                               reference_value=None,
                               abs_threshold=None,
                               rel_threshold=None,
                               meta={'names': ['prediction']},
                               profiling_file=None)
     presenter = VectorPrintPresenter()
     presenter.write_result(result)
     mock_write_scalar_res.assert_called_once_with(
         result.evaluated_value[0],
         result.name,
         None,
         result.abs_threshold,
         result.rel_threshold,
         postfix='%',
         scale=100,
         value_name=result.meta['names'][0],
         result_format='{:.2f}')
    def test_mae_with_positive_diff_between_annotation_and_prediction(self):
        annotations = [
            RegressionAnnotation('identifier', 3),
            RegressionAnnotation('identifier2', 1)
        ]
        predictions = [
            RegressionPrediction('identifier', 1),
            RegressionPrediction('identifier2', -3)
        ]
        config = [{'type': 'mae'}]
        expected = EvaluationResult(
            pytest.approx([3.0, 1.0]), None, 'mae', 'mae', None, None, {
                'postfix': ' ',
                'scale': 1,
                'names': ['mean', 'std'],
                'calculate_mean': False,
                'target': 'higher-worse'
            }, None)
        dispatcher = MetricsExecutor(config, None)

        dispatcher.update_metrics_on_batch(range(len(annotations)),
                                           annotations, predictions)

        for _, evaluation_result in dispatcher.iterate_metrics(
                annotations, predictions):
            assert evaluation_result == expected
    def test_mae_on_interval_values_in_range(self):
        annotations = [
            RegressionAnnotation('identifier', 0.5),
            RegressionAnnotation('identifier', 0.5)
        ]
        predictions = [
            RegressionPrediction('identifier', 1),
            RegressionPrediction('identifier', 0.25)
        ]
        config = [{'type': 'mae_on_interval', 'end': 1}]
        expected = EvaluationResult(
            pytest.approx([0.375, 0.125]), None, 'mae_on_interval',
            'mae_on_interval', None, None, {
                'postfix': ' ',
                'scale': 1,
                'names': ['mean: <= 0.0 < 1.0', 'std: <= 0.0 < 1.0'],
                'calculate_mean': False,
                'target': 'higher-worse',
                'orig_names': ['mean: <= 0.0 < 1.0', 'std: <= 0.0 < 1.0']
            }, None)
        dispatcher = MetricsExecutor(config, None)

        dispatcher.update_metrics_on_batch(range(len(annotations)),
                                           annotations, predictions)

        for _, evaluation_result in dispatcher.iterate_metrics(
                annotations, predictions):
            assert evaluation_result == expected
 def test_vector_presenter_with_vector_data_with_dict_ref_without_represented_classes(
         self, mocker):
     mock_write_scalar_res = mocker.patch(
         'openvino.tools.accuracy_checker.presenters.write_scalar_result'
     )  # type: MagicMock
     result = EvaluationResult(name='scalar_metric',
                               metric_type='metric',
                               evaluated_value=[0.4, 0.6],
                               reference_value={
                                   'class3': 0.4,
                                   'class4': 0.5
                               },
                               abs_threshold=None,
                               rel_threshold=None,
                               meta={
                                   'names': ['class1', 'class2'],
                                   'scale': [1, 1]
                               },
                               profiling_file=None)
     presenter = VectorPrintPresenter()
     presenter.write_result(result)
     calls = [
         call(result.evaluated_value[0],
              result.name,
              None,
              None,
              None,
              postfix='%',
              scale=result.meta['scale'][0],
              result_format='{:.2f}',
              value_name=result.meta['names'][0]),
         call(result.evaluated_value[1],
              result.name,
              None,
              None,
              None,
              postfix='%',
              scale=result.meta['scale'][1],
              result_format='{:.2f}',
              value_name=result.meta['names'][1]),
         call(np.mean(result.evaluated_value),
              result.name,
              result.abs_threshold,
              result.rel_threshold,
              None,
              result_format='{:.2f}',
              value_name='mean',
              postfix='%',
              scale=1)
     ]
     mock_write_scalar_res.assert_has_calls(calls)
 def test_vector_presenter_with_vector_data_has_specific_format_with_ignore_formatting(
         self, mocker):
     mock_write_scalar_res = mocker.patch(
         'openvino.tools.accuracy_checker.presenters.write_scalar_result'
     )  # type: MagicMock
     result = EvaluationResult(name='scalar_metric',
                               metric_type='metric',
                               evaluated_value=[0.4, 0.6],
                               reference_value=None,
                               abs_threshold=None,
                               rel_threshold=None,
                               meta={
                                   'names': ['class1', 'class2'],
                                   'scale': 0.5,
                                   'postfix': 'km/h',
                                   'data_format': '{:.4f}'
                               },
                               profiling_file=None)
     presenter = VectorPrintPresenter()
     presenter.write_result(result, ignore_results_formatting=True)
     calls = [
         call(result.evaluated_value[0],
              result.name,
              None,
              None,
              None,
              postfix=' ',
              scale=1,
              value_name=result.meta['names'][0],
              result_format='{}'),
         call(result.evaluated_value[1],
              result.name,
              None,
              None,
              None,
              postfix=' ',
              scale=1,
              value_name=result.meta['names'][1],
              result_format='{}'),
         call(np.mean(result.evaluated_value),
              result.name,
              result.reference_value,
              result.abs_threshold,
              result.rel_threshold,
              value_name='mean',
              postfix=' ',
              scale=1,
              result_format='{}')
     ]
     mock_write_scalar_res.assert_has_calls(calls)
 def test_vector_presenter_with_vector_data_has_default_format_with_ignore_formatting_compare_with_ref(
         self, mocker):
     mock_write_scalar_res = mocker.patch(
         'openvino.tools.accuracy_checker.presenters.write_scalar_result'
     )  # type: MagicMock
     result = EvaluationResult(name='vector_metric',
                               metric_type='metric',
                               evaluated_value=[40, 60],
                               reference_value=49,
                               abs_threshold=None,
                               rel_threshold=None,
                               meta={'names': ['class1', 'class2']},
                               profiling_file=None)
     presenter = VectorPrintPresenter()
     presenter.write_result(result, ignore_results_formatting=True)
     calls = [
         call(result.evaluated_value[0],
              result.name,
              None,
              None,
              None,
              postfix=' ',
              scale=1,
              value_name=result.meta['names'][0],
              result_format='{}'),
         call(result.evaluated_value[1],
              result.name,
              None,
              None,
              None,
              postfix=' ',
              scale=1,
              value_name=result.meta['names'][1],
              result_format='{}'),
         call(np.mean(result.evaluated_value),
              result.name,
              result.abs_threshold,
              result.rel_threshold, (1.0, 0.02040816326530612),
              value_name='mean',
              postfix=' ',
              scale=1,
              result_format='{}')
     ]
     mock_write_scalar_res.assert_has_calls(calls)
 def test_reference_value_for_scalar_presenter(self, mocker):
     mock_write_scalar_res = mocker.patch(
         'openvino.tools.accuracy_checker.presenters.write_scalar_result'
     )  # type: MagicMock
     result = EvaluationResult(name='vector_metric',
                               metric_type='metric',
                               evaluated_value=[0.456],
                               reference_value=0.456,
                               abs_threshold=None,
                               rel_threshold=None,
                               meta={},
                               profiling_file=None)
     presenter = ScalarPrintPresenter()
     presenter.write_result(result)
     mock_write_scalar_res.assert_called_once_with(
         np.mean(result.evaluated_value),
         result.name,
         result.abs_threshold,
         result.rel_threshold, (0.0, 0.0),
         postfix='%',
         scale=100,
         result_format='{:.2f}')
 def test_vector_presenter_with_vector_data_contain_one_element_compare_with_reference_ignore_formatting(
         self, mocker):
     mock_write_scalar_res = mocker.patch(
         'openvino.tools.accuracy_checker.presenters.write_scalar_result'
     )  # type: MagicMock
     result = EvaluationResult(name='vector_metric',
                               metric_type='metric',
                               evaluated_value=[40],
                               reference_value=42,
                               abs_threshold=None,
                               rel_threshold=None,
                               meta={},
                               profiling_file=None)
     presenter = VectorPrintPresenter()
     presenter.write_result(result, ignore_results_formatting=True)
     mock_write_scalar_res.assert_called_once_with(
         result.evaluated_value[0],
         result.name,
         result.abs_threshold,
         result.rel_threshold, (2.0, 0.047619047619047616),
         postfix=' ',
         scale=1,
         value_name=None,
         result_format='{}')
    def test_mae_on_interval_default_all_missed(self):
        annotations = [RegressionAnnotation('identifier', -2)]
        predictions = [RegressionPrediction('identifier', 1)]
        config = [{'type': 'mae_on_interval', 'end': 1}]
        expected = EvaluationResult(
            pytest.approx([0.0]), None, 'mae_on_interval', 'mae_on_interval',
            None, None, {
                'postfix': ' ',
                'scale': 1,
                'names': [],
                'calculate_mean': False,
                'target': 'higher-worse',
                'orig_names': ['mean: <= 0.0 < 1.0', 'std: <= 0.0 < 1.0']
            }, None)
        dispatcher = MetricsExecutor(config, None)

        dispatcher.update_metrics_on_batch(range(len(annotations)),
                                           annotations, predictions)

        with pytest.warns(UserWarning) as warnings:
            for _, evaluation_result in dispatcher.iterate_metrics(
                    annotations, predictions):
                assert len(warnings) == 1
                assert evaluation_result == expected
def generate_expected_result(values, metric_name, labels=None):
    meta = {'target': 'higher-better'}
    if labels:
        meta.update({'names': list(labels.values())})

    return EvaluationResult(pytest.approx(values), None, metric_name, metric_name, None, None, meta, None)