예제 #1
0
    def test_elementwise_round_even_infer(self):
        graph = round_test_graph(self.nodes_attributes, self.value,
                                 'half_to_even')

        graph.graph['layout'] = 'NCHW'
        elementwise_node = Node(graph, 'elementwise_node')
        Round.infer(elementwise_node)
        exp_shape = np.array([13])
        res_shape = graph.node['node_3']['shape']
        res_value = graph.node['node_3']['value']
        exp_value = np.array([
            -24.,
            -22.,
            -2.,
            -2.,
            -0.,
            0.,
            1.,
            2.,
            2.,
            2.,
            4.,
            22.,
            24.,
        ])
        for i, value in enumerate(exp_shape):
            self.assertEqual(res_shape[i], value)
        for i, value in enumerate(exp_value):
            self.assertAlmostEqual(res_value[i], value)
예제 #2
0
 def extract(cls, node: Node):
     Round.update_node_stat(node, {'mode': 'half_to_even'})
     return cls.enabled
    def replace_sub_graph(self, graph: Graph, match: Dict[str, Node]):
        node = match['op']
        name = node.name

        min_port_tuple = (node.in_port(1).get_source().node,
                          node.in_port(1).get_source().idx)
        max_port_tuple = (node.in_port(2).get_source().node,
                          node.in_port(2).get_source().idx)

        node.in_port(1).disconnect()
        node.in_port(2).disconnect()

        # make sure min < max
        min_less_max = Less(graph, {
            'name': name + '/if_min_less_max'
        }).create_node([min_port_tuple, max_port_tuple])
        minimum = Select(graph, {
            'name': name + '/minimum'
        }).create_node([min_less_max, min_port_tuple, max_port_tuple])
        maximum = Select(graph, {
            'name': name + '/maximum'
        }).create_node([min_less_max, max_port_tuple, min_port_tuple])

        # to create zero of limits data type, we multiply it by integer zero
        zero = create_op_node_with_second_input(graph,
                                                Mul,
                                                int64_array(0),
                                                {'name': name + '/zero'},
                                                input_node=minimum)

        # if 0 < min < max: min_adj = 0 and max_adj = max - min
        min_greater_zero = Greater(graph, {
            'name': name + '/if_minimum_greater_zero'
        }).create_node([minimum, zero])
        max_minus_min = Sub(graph, {
            'name': name + '/max_minus_min'
        }).create_node([maximum, minimum])
        minimum = Select(graph, {
            'name': name + '/first_adj_min'
        }).create_node([min_greater_zero, zero, minimum])
        maximum = Select(graph, {
            'name': name + '/first_adj_max'
        }).create_node([min_greater_zero, max_minus_min, maximum])

        # if min < max < 0: min_adj = min - max and max_adj = 0
        max_less_zero = Less(graph, {
            'name': name + '/if_max_less_zero'
        }).create_node([maximum, zero])
        min_minus_max = Sub(graph, {
            'name': name + '/min_minus_max'
        }).create_node([minimum, maximum])
        minimum = Select(graph, {
            'name': name + '/second_adj_min'
        }).create_node([max_less_zero, min_minus_max, minimum])
        maximum = Select(graph, {
            'name': name + '/second_adj_max'
        }).create_node([max_less_zero, zero, maximum])

        # scale = (max - min) / (2 ^ num_bits - 1),
        float_range = Sub(graph, {
            'name': name + '/float_range'
        }).create_node([maximum, minimum])
        quant_min_value, quant_max_value = int(
            node.narrow_range), 2**node.num_bits - 1
        int_range = Const(
            graph,
            dict(name=name + '/int_range',
                 value=quant_max_value - quant_min_value)).create_node()
        scale = Div(graph, {
            'name': name + '/scale'
        }).create_node([float_range, int_range])
        # min_adj = scale * round(min / scale)
        descaled_min = Div(graph, {
            'name': name + '/descaled_min'
        }).create_node([minimum, scale])
        rounded_descaled_min = Round(graph, {
            'name': name + '/rounded_descaled_min'
        }).create_node([descaled_min])
        min_adj = Mul(graph, {
            'name': name + '/min_adj'
        }).create_node([scale, rounded_descaled_min])
        # max_adj = max + min_adj - min.
        adjustment = Sub(graph, {
            'name': name + '/limits_adjustment'
        }).create_node([min_adj, minimum])
        max_adj = Add(graph, {
            'name': name + '/max_adj'
        }).create_node([maximum, adjustment])

        # FakeQuantize operation has 5 inputs instead of 3 inputs in TensorFlow
        node.add_input_port(3, skip_if_exist=True)
        node.add_input_port(4, skip_if_exist=True)

        node.in_port(1).connect(min_adj.out_port(0))
        node.in_port(2).connect(max_adj.out_port(0))
        node.in_port(3).connect(min_adj.out_port(0))
        node.in_port(4).connect(max_adj.out_port(0))

        FakeQuantize.update_node_stat(node, {'levels': node['levels']})
예제 #4
0
 def extract(cls, node):
     Round.update_node_stat(node, {'mode': 'half_away_from_zero'})
     return cls.enabled