예제 #1
0
    def replace_sub_graph(self, graph: Graph, match: dict):
        node = match['op']
        name = node.soft_get('name', node.id)
        assert node.has_valid('axis')

        axis = Const(graph, {'name': name + '/axis', 'value': int64_array(node.axis)}).create_node()
        gather = Gather(graph, {'name': name}).create_node()
        node.in_port(0).get_connection().set_destination(gather.in_port(0))
        node.in_port(1).get_connection().set_destination(gather.in_port(1))
        axis.out_port(0).connect(gather.in_port(2))
        node.out_port(0).get_connection().set_source(gather.out_port(0))
예제 #2
0
 def replace_op(self, graph: Graph, node: Node):
     axis = Const(graph, {'value': 0}).create_node()
     inputs = [node.in_node(1),  # weight
               node.in_node(0),  # input_ids
               axis]
     gather = Gather(graph, dict(name=node.name)).create_node(inputs)
     return [gather.id]
예제 #3
0
def reorder_inputs_for_shape_or_slice(op_node: Node, input_port: int,
                                      permute_indices_for_gather: list):
    """
    axis and slice permutations are almost the same the only difference is that for slice in general
    case permutation depends from slice_rank not from input_rank or output_rank
    """
    graph = op_node.graph
    data_node = op_node.in_node(input_port)

    gather_name = op_node.soft_get('name', op_node.id) + '/ShapeGather'
    const = Const(
        graph, {
            'value': permute_indices_for_gather,
            'name': gather_name + '/const',
            'need_shape_inference': True
        }).create_node_with_data()
    axis_const = Const(graph, {
        'value': int64_array(0),
        'name': gather_name + '/axis'
    }).create_node_with_data()
    gather = Gather(graph, {
        'name': gather_name,
        'need_shape_inference': True
    }).create_node_with_data([data_node, const, axis_const])
    attrs = graph.get_edge_data(data_node.id, op_node.id, key=0).copy()

    graph.add_edge(gather.id, op_node.id, **attrs)
    graph.remove_edge(data_node.id, op_node.id)

    # need to run manually to override output shape value to resolve shape collision for nodes with
    # 'correct_data_layout' output port attrs
    op_node['need_shape_inference'] = True
예제 #4
0
    def placeholder_scales(self, placeholder: Node):
        """
        Helper function to get scales for prior boxes out of input image size:
                [1 / im_width, 1 / im_height, 1 / im_width, 1 / im_height]
        """
        graph = placeholder.graph
        name = placeholder.soft_get('name', placeholder.id)

        shape_value = placeholder.soft_get('shape', None)
        assert shape_value is not None, \
            "[ {} replacer ] Placeholder `{}` should have shape attribute".format(self.replacement_id, name)
        assert isinstance(shape_value, np.ndarray), \
            "[ {} replacer ] Placeholder `{}` shape attribute should be np.ndarray".format(self.replacement_id, name)
        assert shape_value.size == 4, \
            "[ {} replacer ] Placeholder `{}` should be 4D. Shape: {}".format(self.replacement_id, name, shape_value)

        shape = Shape(graph, {'name': 'input_image_shape'}).create_node()
        shape.in_port(0).connect(placeholder.out_port(0))

        begin = Const(graph, {'value': int64_array([1])}).create_node()
        end = Const(graph, {'value': int64_array([3])}).create_node()
        stride = Const(graph, {'value': int64_array([1])}).create_node()
        spatial = StridedSlice(graph, {'name': name + '/get_h_w', 'begin_mask': int64_array([1]),
                                       'end_mask': int64_array([1]), 'new_axis_mask': int64_array([0]),
                                       'shrink_axis_mask': int64_array([0]), 'ellipsis_mask': int64_array([0])}).create_node()

        spatial.in_port(0).connect(shape.out_port(0))
        spatial.in_port(1).connect(begin.out_port(0))
        spatial.in_port(2).connect(end.out_port(0))
        spatial.in_port(3).connect(stride.out_port(0))

        power = Const(graph, {'value': float32_array([-1.])}).create_node()
        spatial_scale = Pow(graph, {}).create_node()

        spatial_scale.in_port(0).connect(spatial.out_port(0))
        spatial_scale.in_port(1).connect(power.out_port(0))

        # Power `type_infer` requires inputs to have equal data type
        convert_to_fp32 = Cast(graph, {'dst_type': np.float32}).create_node()
        spatial_scale.in_port(0).get_connection().insert_node(convert_to_fp32)

        order = Const(graph, {'value': int64_array([1, 0])}).create_node()
        axis_const = Const(graph, {'value': int64_array(0)}).create_node()
        reverse = Gather(graph, {}).create_node()

        reverse.in_port(0).connect(spatial_scale.out_port(0))
        reverse.in_port(1).connect(order.out_port(0))
        axis_const.out_port(0).connect(reverse.in_port(2))

        priors_scale_node = Concat(graph, {'axis': 0, 'in_ports_count': 2}).create_node()
        priors_scale_node.add_input_port(0, skip_if_exist=True)
        priors_scale_node.add_input_port(1, skip_if_exist=True)

        priors_scale_node.in_port(0).connect(reverse.out_port(0))
        priors_scale_node.in_port(1).connect(reverse.out_port(0))
        return priors_scale_node
예제 #5
0
def get_shape_values_by_indices_node(shape_node: Node,
                                     indices_node: Node) -> Node:
    """
    The function returns a node that produces values of the specified indices node of the input node 'shape_node'

    :param shape_node: the node of 1D output shape to get elements from
    :param indices_node: the node of 1D output shape with the list of element indices to get
    :return: node producing required elements of the node
    """
    graph = shape_node.graph
    axis = Const(graph, {
        'value': int64_array(0),
        'name': shape_node.name + '/Axis'
    }).create_node()
    gather_node = Gather(graph, {
        'name': shape_node.name + '/Gather'
    }).create_node()

    shape_node.out_port(0).connect(gather_node.in_port(0))
    indices_node.out_port(0).connect(gather_node.in_port(1))
    axis.out_port(0).connect(gather_node.in_port(2))
    return gather_node
예제 #6
0
def axis(op_node: Node, port_info: str, input_port: int):
    """
    Performs layout change related transformation of the data on the in_port_idx port of op_node.
    Translates shape indexes from one layout to another according to inverse permutation

    Transformation inserts Gather operation with
        permutation as 0-port input data and
        actual data to translate as 1-port input indexes of Gather

    For example:
        NHWC Reduce operation has 0-port input with data of shape [1, 2, 3, 4] and
        1-port input with axis indices [0, 1].

        After translating such operation to NCHW layout:
            0-port input shape = [1, 4, 2, 3]
            1-port input axis indices = [0, 2]
    """
    graph = op_node.graph

    permutation_data_node = get_node_with_permutation(op_node, port_info)
    assert permutation_data_node.has_and_set('permutation'), 'Data node "{}" does not have permutation for node {}, ' \
                                                             'port_info "{}".'.format(permutation_data_node.id,
                                                                                      op_node.id, port_info)
    permutation = permutation_data_node.permutation
    if len(permutation.perm) == 0:
        return

    data_node = op_node.in_node(input_port)

    gather_name = op_node.soft_get('name', op_node.id) + '/AxisGather'
    const = Const(
        graph, {
            'value': permutation.inv,
            'name': gather_name + '/const',
            'need_shape_inference': True
        }).create_node_with_data()
    axis_const = Const(graph, {
        'value': int64_array(0),
        'name': gather_name + '/axis'
    }).create_node_with_data()
    gather = Gather(graph, {
        'name': gather_name,
        'need_shape_inference': True
    }).create_node_with_data([const, data_node, axis_const])
    attrs = graph.get_edge_data(data_node.id, op_node.id, key=0).copy()
    graph.add_edge(gather.id, op_node.id, **attrs)
    graph.remove_edge(data_node.id, op_node.id)
    op_node['need_shape_inference'] = True
    def replace_pattern(graph: Graph, match: dict):
        node = match['op']
        if not node.has_port('in', 2) or node.in_port(2).disconnected() or not node.has_and_set('shape_input'):
            return

        if node.has_valid('layout') and not node.layout.startswith('NC') and graph.graph['layout'] == 'NCHW':
            input_shape_rank = len(node.in_port(0).data.get_shape())
            permutation = PermuteAttrs.get_nhwc_to_nchw_permutation(input_shape_rank)

            data_node = node.in_node(2)

            name = node.soft_get('name', node.id) + '/ShapeGather'
            const = Const(graph, {'value': permutation.perm, 'name': name + '/Const',
                                  'need_shape_inference': True}).create_node_with_data()
            axis_const = Const(graph, {'value': int64_array(0), 'name': name + '/Axis'}).create_node_with_data()
            gather = Gather(graph, {'name': name,
                                    'need_shape_inference': True}).create_node_with_data([data_node, const, axis_const])
            attrs = graph.get_edge_data(data_node.id, node.id, key=0).copy()

            graph.add_edge(gather.id, node.id, **attrs)
            graph.remove_edge(data_node.id, node.id)
예제 #8
0
 def extract(cls, node):
     Gather.update_node_stat(node,
                             {'batch_dims': node.pb.attr['batch_dims'].i})
     return cls.enabled
예제 #9
0
def order(op_node: Node, port_info: str, input_port: int):
    """
        Performs layout change related transformation of the data on the in_port_idx port of op_node.
        Translates ordered shape indexes from one layout to another according to permutation

        Transformation inserts two Gather operations

        1 Gather reorders data to new layout according to direct permutation:
            actual data to translate as 1-port input indexes of Gather and
            permutation as 0-port input data
        2 Gather translates shape indexes from one layout to another according to inverse permutation
            permutation as 0-port input data and
            actual data to translate as 1-port input indexes of Gather

    For example:
        NHWC Transpose operation has 0-port input with data of shape [1, 2, 3, 4] and
        1-port input with new order indices [0, 1, 3, 2].

        After translating such operation to NCHW layout:
            0-port input shape = [1, 4, 2, 3]

        1 phase (after first Gather insertion):
            1-port input order indices = [0, 2, 1, 3]
        2 phase (after second Gather insertion):
            1-port input order indices = [0, 3, 2, 1]
    """
    graph = op_node.graph
    permutation_data_node = get_node_with_permutation(op_node, port_info)
    assert permutation_data_node.has_and_set('permutation'), 'Data node "{}" does not have permutation for node {}, ' \
                                                             'port_info "{}".'.format(permutation_data_node.id,
                                                                                      op_node.id, port_info)
    permutation = permutation_data_node.permutation
    if len(permutation.perm) == 0:
        return

    data_node = op_node.in_node(input_port)

    gather_name = op_node.soft_get('name', op_node.id) + '/OrderGather_1'
    const = Const(
        graph, {
            'value': permutation.perm,
            'name': gather_name + '/const',
            'need_shape_inference': True
        }).create_node_with_data()
    axis_const = Const(graph, {
        'value': int64_array(0),
        'name': gather_name + '/axis'
    }).create_node_with_data()
    gather = Gather(graph, {
        'name': gather_name,
        'need_shape_inference': True
    }).create_node_with_data([data_node, const, axis_const])

    gather_1_name = op_node.soft_get('name', op_node.id) + '/OrderGather_2'
    const_1 = Const(
        graph, {
            'value': permutation.inv,
            'name': gather_1_name + '/const',
            'need_shape_inference': True
        }).create_node_with_data()
    axis_const_1 = Const(graph, {
        'value': int64_array(0),
        'name': gather_1_name + '/axis'
    }).create_node_with_data()
    gather_1 = Gather(graph, {
        'name': gather_1_name,
        'need_shape_inference': True
    }).create_node_with_data([const_1, gather, axis_const_1])

    attrs = graph.get_edge_data(data_node.id, op_node.id, key=0).copy()
    graph.add_edge(gather_1.id, op_node.id, **attrs)
    graph.remove_edge(data_node.id, op_node.id)
    op_node['need_shape_inference'] = True