def find_and_replace_pattern(self, graph: Graph): for node in graph.get_data_nodes(): if node.has_and_set('nchw_layout'): continue # Get NHWC to NCHW permutation for N dims, where N = len(node.shape) permutation = PermuteAttrs().get_nhwc_to_nchw_permutation(len(node.shape)) # Check that data node already has permutation skip_permutation = False for in_node in node.in_nodes(): edge_attrs = node.graph.get_edge_data(in_node.id, node.id)[0] if 'permutation' in edge_attrs: skip_permutation = True for out_node in node.out_nodes(): edge_attrs = node.graph.get_edge_data(node.id, out_node.id)[0] if 'permutation' in edge_attrs: skip_permutation = True if skip_permutation: continue # Set permutation to all in/out edges for in_node in node.in_nodes(): PermuteAttrs.set_permutation(in_node, node, permutation) for out_node in node.out_nodes(): PermuteAttrs.set_permutation(node, out_node, permutation)
def generate_sub_graph(self, graph: Graph, match: SubgraphMatch): # IE DetectionOutput layer consumes flattened confidences and locations tensors. # That is why we add reshapes before them. locs_node = match.single_input_node(0) conf_node = match.single_input_node(1) prior_boxes_node = match.single_input_node(2) locs_out_nodes = locs_node[0].out_nodes() assert len(locs_out_nodes) == 1 locs_out_node = locs_out_nodes[list(locs_out_nodes.keys())[0]] assert locs_out_node.op == "Result", locs_out_node.op graph.remove_node(locs_out_node.id) conf_out_nodes = conf_node[0].out_nodes() assert len(conf_out_nodes) == 1 conf_out_node = conf_out_nodes[list(conf_out_nodes.keys())[0]] assert conf_out_node.op == "Result", conf_out_node.op graph.remove_node(conf_out_node.id) # reshape operation to flatten confidence tensor const = Const(graph, {'value': int64_array([0, -1])}).create_node() reshape_loc_node = Reshape(graph, {}).create_node( [locs_node, const], dict(name='DetectionOutput_Reshape_loc_')) # reshape operation to flatten confidence tensor reshape_conf_node = Reshape(graph, {}).create_node( [conf_node, const], dict(name='DetectionOutput_Reshape_conf_')) # remove the Result node after the priors node assert prior_boxes_node[0].out_node().op == "Result" graph.remove_node(prior_boxes_node[0].out_node().id) # reshape operation for prior boxes tensor const = Const(graph, {'value': int64_array([1, 2, -1])}).create_node() reshape_priors_node = Reshape(graph, {}).create_node( [prior_boxes_node, const], dict(name='DetectionOutput_Reshape_priors_')) # create Detection Output node with three inputs: locations, confidences and prior boxes detection_output_op = DetectionOutput( graph, match.custom_replacement_desc.custom_attributes) detection_output_node = detection_output_op.create_node( [reshape_loc_node, reshape_conf_node, reshape_priors_node], dict(name=detection_output_op.attrs['type'] + '_')) PermuteAttrs.set_permutation(reshape_priors_node, detection_output_node, None) # create Output node to mark DetectionOutput as a graph output operation output_op = Result(graph) output_op.create_node([detection_output_node], dict(name='sink_')) return {}
def infer(node: Node): """ Infers shape of convolution node as it is done in ONNX. It is very similar to one that Caffe does, but slightly different. We made a complete fork of this function because they are supposed to be supported differently by different people. Args: node: graph convolution node """ input_shape = node.in_port(0).data.get_shape() if input_shape is None: raise Error('Input data shape is None for node {}'.format( node.soft_get('name', node.id))) # bias_term cannot be deduced earlier for frameworks that represent # convolution weights/biases as regular inputs; so the number of inputs # is being checked here and restore correct value for bias_term to # have the rest of the code unchanged. It will be used after we merge # several infer functions for convolution in different FWs to a single one. if not node.has_valid('bias_term'): node['bias_term'] = len(node.in_nodes()) == 3 weights_index = node.weights_index if node.has_valid( 'weights_index') else 1 # Reshape weights kernel to original shape # In case of caffe or MXNet framework, values for weights have no structured shape like OIHW # so we have to reshape weights to normal shape # For this case, Convolution node should have attribute reshape_kernel = True if node.has_valid('reshape_kernel') and node.reshape_kernel: if not (node.has_valid('output') and node.has_valid('channel_dims') and node.has_valid('group') and node.has_valid('kernel_spatial')): log.error( 'Cannot reshape kernel due to not all required attrs was set to {} node' .format(node.id)) return # layout for Convolution weights is OIHW kernel_shape = shape_array([ node.output, input_shape[node.channel_dims].item() / node.group, *[ node.kernel_spatial[i] for i in range(len(node.kernel_spatial)) ] ]) if node.type == 'Deconvolution': # layout for Deconvolution weights is IOHW kernel_shape[[0, 1]] = kernel_shape[[1, 0]] if is_fully_defined( kernel_shape) and np.prod(kernel_shape) != np.prod( node.in_node(weights_index).value.shape): log.error( "Size of weights {} does not match kernel shape: {}\n" "".format(np.prod(node.in_node(weights_index).value.shape), kernel_shape) + " Possible reason is wrong channel number in input shape\n" ) raise Error("Cannot reshape weights to kernel shape") if not is_fully_defined(kernel_shape): num_undefined = np.count_nonzero(kernel_shape.mask is True) # pylint: disable=no-member if num_undefined > 1: raise Error( 'Too many undefined dimensions of the kernel shape for node {}. Use --input_shape ' 'command line parameter to specify model input shapes'. format(node.soft_get('name', node.id))) kernel_size = np.prod(node.in_node(weights_index).value.shape) # calculate undefined dimension using fully defined shape of the weights input and known kernel_shape # dimensions kernel_shape[np.where(kernel_shape == np.ma.masked)[0] [0]] = kernel_size // np.prod(kernel_shape) node.in_node(weights_index).shape = shape_array(kernel_shape) node.in_node(weights_index).value = np.reshape( node.in_node(weights_index).value, kernel_shape) node.reshape_kernel = False # Pass weights shape to node attribute kernel_shape kernel_shape = node.in_node(weights_index).shape node['kernel_shape'] = kernel_shape # Calculate kernel_spatial_idx and spatial_dims if it is not specified # It is necessary for ONNX dut to convolution can be 1D/2D/3D if not node.has_valid('kernel_spatial_idx'): node['kernel_spatial_idx'] = np.delete( [x for x in range(len(kernel_shape))], (node.input_feature_channel, node.output_feature_channel)) if not node.has_valid('spatial_dims'): node['spatial_dims'] = np.delete( [x for x in range(len(input_shape))], (node.channel_dims[0], node.batch_dims[0])) node['kernel_spatial'] = kernel_shape[node.kernel_spatial_idx] if not node.has_valid('output'): # restore the number of output feature maps from the second argument that is weights if node.type in [ 'Convolution', 'Deconvolution', 'DeformableConvolution', 'BinaryConvolution' ]: node['output'] = kernel_shape[node.output_feature_channel] else: raise Error( 'Convolution infer function was called for a node {} with unsupported type {}', node.soft_get('name'), node.type) # Set default values for dilation, strides and pads if not set if not node.has_valid('dilation'): node['dilation'] = np.full([len(input_shape)], 1, dtype=np.int64) if not node.has_valid('stride'): node['stride'] = np.full([len(input_shape)], 1, dtype=np.int64) if not node.has_valid('pad'): node['pad'] = int64_array([[0, 0]] * len(input_shape)) node['pad_spatial_shape'] = node.pad[node.spatial_dims] if not node.has_valid('output_padding'): node['output_padding'] = np.full([len(input_shape)], 0, dtype=np.int64) if node.has_valid('output_padding') and len(input_shape) > len( node['output_padding']): output_padding = np.zeros(len(input_shape), dtype=np.int64) for i in range(len(node['output_padding'])): output_padding[i] = node['output_padding'][i] node['output_padding'] = output_padding input_spatial_shape = input_shape[node.spatial_dims] stride_spatial_shape = node.stride[node.spatial_dims] kernel_extent = node.dilation[node.spatial_dims] * ( node.kernel_spatial - 1) + 1 # TensorFlow always has auto_pad attribute that can be either valid or same_upper # In ONNX auto_pad attribute is deprecated but appears in some models (could be valid, same_upper or same_lower) # Caffe do not use auto_pad attribute if node.has_valid( 'auto_pad' ) and node.auto_pad != 'explicit' and not node.has_valid( 'output_spatial_shape'): node['pad_spatial_shape'], node[ 'output_spatial_shape'] = tf_window_op_pad_infer( input_spatial_shape, kernel_extent, stride_spatial_shape, node.auto_pad, node.type == 'Deconvolution') pad = np.zeros((len(input_shape), 2), dtype=np.int64) pad[node.spatial_dims] = node.pad_spatial_shape node.pad = pad else: pad_spatial_shape = np.add.reduce(node.pad_spatial_shape, axis=1) if node.type in ('Convolution', 'BinaryConvolution'): float_spatial = Convolution.calc_convolution( input_spatial_shape, stride_spatial_shape, pad_spatial_shape, kernel_extent) node['output_spatial_shape'] = shape_array(float_spatial) elif node.type == 'Deconvolution': # In case of given output_spatial_shape we calculate pads spatial if node.has_valid('output_spatial_shape'): if node.has_valid('get_pad'): node['pad'] = node.get_pad(node, input_shape, kernel_shape) else: log.debug( 'Can\'t calculate paddings due to missing lambda get_pad in {} node' .format(node.id)) return else: output_padding = node.output_padding[ node.spatial_dims] if node.has_valid( 'output_padding') else None if output_padding is not None and any(output_padding): pad_spatial_shape -= output_padding for dim in range(len(pad_spatial_shape)): node.pad_spatial_shape[dim][ 1] -= pad_spatial_shape[dim] float_spatial = Convolution.calc_deconvolution( node, input_spatial_shape, pad_spatial_shape, kernel_extent) node['output_spatial_shape'] = shape_array(float_spatial) elif node.type == 'DeformableConvolution': # get the output spatial shape from the second input with offsets node['output_spatial_shape'] = int64_array( [node.in_node(1).shape[2:4]]) else: assert 'Unsupported layer type "{}"'.format(node.type) # For cases when group attribute wasn't set in extractor we should specify get_group attribute # this attribute should store lambda node: ... (check tf convolution extractor) if node.has_valid('get_group'): node['group'] = node.get_group(node) output_shape = shape_array( [dynamic_dimension_value for _ in range(len(input_shape))]) output_shape[node.batch_dims] = input_shape[node.batch_dims] # pylint: disable=unsupported-assignment-operation output_shape[node.spatial_dims] = node.output_spatial_shape # pylint: disable=unsupported-assignment-operation # For cases when output attribute wasn't set in extractor we should specify get_output_feature_dim attribute # this attribute should store lambda node: ... (check tf convolution extractor) if node.has_valid('get_output_feature_dim'): node['output'] = node.get_output_feature_dim(node) output_shape[node.channel_dims] = node.output # pylint: disable=unsupported-assignment-operation node['output_shape'] = output_shape node.out_port(0).data.set_shape(output_shape) # bin attribute is used for pre-processing, but it will be deleted in BlobNormalizer transformation # and the blobs (weights, biases) will be represented as inputs to the node mark_input_bins( node, start_port=1 if node.type != 'DeformableConvolution' else 2) assign_dims_to_weights(node.in_node(weights_index), node.kernel_spatial_idx, node.input_feature_channel, node.output_feature_channel, len(kernel_shape)) PermuteAttrs.create_permute_attrs( node, attrs=[ ('pad', 'input:0'), ('stride', 'input:0'), ('dilation', 'input:0'), ('output_shape', 'input:0'), ('batch_dims', 'input:0'), ('channel_dims', 'input:0'), ('spatial_dims', 'input:0'), ('kernel_shape', 'input:{}'.format(weights_index)), ('kernel_spatial_idx', 'input:{}'.format(weights_index)), ('input_feature_channel', 'input:{}'.format(weights_index)), ('output_feature_channel', 'input:{}'.format(weights_index)), ]) # is needed to permute Conv weights from the original TF [H, W, C_IN, C_OUT] into IE [C_OUT, C_IN, H, W] # but for other nodes in weights subgraph permutations must turned off # by marking with MarkSubGraphsWithCorrectLayout even if graph layout is NCHW. PermuteAttrs.set_permutation( node.in_node(weights_index), node, node.soft_get('get_weights_permute', None)) PermuteInputs().set_input_permutation(node.in_node(weights_index), node, 'input:{}'.format(weights_index), 'transpose')
def infer(node: Node): """ Deconvolution has an input argument that explicitly determines output shape, so in contrast to the forward Conv2d we shouldn't infer output shape. We just use this output shape as an input shape and pass it to our utilities that computes numeric values for padding. They also deliver output shape that is interpreted here as input shape for convolution. We need to check that the real input shape and shape inferred by those utility functions match. """ output_shape = shape_array(node.in_node(2).value) output_shape[0] = node.in_port(0).data.get_shape()[0] kernel_shape = node.in_port(1).data.get_shape() node['kernel_shape'] = kernel_shape if output_shape is None or kernel_shape is None or node.spatial_dims is None or node.stride is None: return if not node.has_valid('kernel_spatial_idx'): node['kernel_spatial_idx'] = np.delete( [x for x in range(len(kernel_shape))], (node.input_feature_channel, node.output_feature_channel)) if not node.has_valid('dilation'): node['dilation'] = np.full([len(output_shape)], 1, dtype=np.int64) if node.has_valid('get_group'): node['group'] = node.get_group(node) spatial_dims = node.spatial_dims output_spatial = shape_array(output_shape[spatial_dims]) stride_spatial = shape_array(node.stride[spatial_dims]) node['kernel_spatial'] = shape_array( kernel_shape[node.kernel_spatial_idx]) node.pad_spatial_shape, input_spatial_for_check = tf_window_op_pad_infer( output_spatial, node.kernel_spatial, stride_spatial, node.auto_pad) assert compatible_shapes(input_spatial_for_check, node.in_node(0).shape[spatial_dims]) pad = np.zeros((len(output_shape), 2), dtype=np.int64) pad[spatial_dims] = node.pad_spatial_shape node.pad = pad node.output = output_shape[node.channel_dims][0] node.output_shape = output_shape node.out_port(0).data.set_shape(output_shape) mark_input_bins(node, ['weights'], 1) assign_dims_to_weights(node.in_node(1), node.kernel_spatial_idx, node.input_feature_channel, node.output_feature_channel, len(kernel_shape)) # OK, now we are sure this is a supported Deconvolution layer node.type = 'Deconvolution' node.op = 'Deconv2D' # Add permute_attrs PermuteAttrs.create_permute_attrs( node, attrs=[ ('pad', 'input:0'), ('stride', 'input:0'), ('output_shape', 'input:0'), ('batch_dims', 'input:0'), ('channel_dims', 'input:0'), ('spatial_dims', 'input:0'), ('kernel_shape', 'input:1'), ('kernel_spatial_idx', 'input:1'), ('input_feature_channel', 'input:1'), ('output_feature_channel', 'input:1'), ]) # is needed to permute Deconv weights from the original TF [H, W, C_OUT, C_IN] into IE [C_IN, C_OUT, H, W] # but for other nodes in weights subgraph permutations must turned off # by marking with MarkSubGraphsWithCorrectLayout even if graph layout is NCHW. PermuteAttrs.set_permutation( node.in_node(1), node, node.soft_get('get_weights_permute', None)) PermuteInputs().set_input_permutation(node.in_node(1), node, 'input:1', 'transpose') PermuteInputs().set_input_permutation(node.in_node(2), node, 'input:0', 'shape') node['force_precision_in_ports'] = {2: 'int64'}