def test_two_inputs_value_infer(self): in_value = np.random.rand(*self.node_attrs['data_in']['shape']).astype( np.float32) graph = build_graph( self.node_attrs, self.edge_attrs + [('pads_begin', 'pad'), ('pads_end', 'pad')], {'data_in': { 'value': in_value }}, nodes_with_edges_only=True, ) pads = np.insert( self.node_attrs['pads_end']['value'], np.arange(len(self.node_attrs['pads_begin']['value'])), self.node_attrs['pads_begin']['value']) pads = np.reshape(pads, (len(self.node_attrs['pads_begin']['value']), 2)) ref_value = np.pad(in_value, pads, constant_values=0, mode='constant') pad_node = Node(graph, 'pad') Pad.infer(pad_node) self.assertTrue( np.array_equal( Node(graph, 'data_out').shape, np.array([1, 3, 100 + 1 + 3, 200 + 2 + 4]))) self.assertTrue( np.array_equal(Node(graph, 'data_out').value, ref_value)) self.assertFalse( isinstance(Node(graph, 'data_out').value, np.ma.masked_array))
def test_two_inputs_dynamic_value_infer(self): in_value = shape_array([dynamic_dimension_value, 3]).reshape( (1, 1, 1, 2)) graph = build_graph( self.node_attrs, self.edge_attrs + [('pads_begin', 'pad'), ('pads_end', 'pad')], {'data_in': { 'value': in_value, 'shape': in_value.shape }}, nodes_with_edges_only=True, ) out_shape = (1, 1, 5, 8) mask = np.zeros(out_shape, dtype=np.bool) mask[0][0][1][2] = True ref_value = np.ma.masked_array(np.zeros(out_shape, dtype=np.int64), mask=mask, dtype=np.int64) ref_value[0][0][1][3] = 3 pad_node = Node(graph, 'pad') Pad.infer(pad_node) output_value = Node(graph, 'data_out').value self.assertTrue( np.array_equal(Node(graph, 'data_out').shape, ref_value.shape)) self.assertTrue(strict_compare_tensors(output_value, ref_value)) self.assertTrue(isinstance(output_value, np.ma.masked_array)) self.assertTrue(output_value[0][0][1][2] is dynamic_dimension)
def test_not_enough_inputs(self): graph = build_graph( self.node_attrs, self.edge_attrs + [('pads_begin', 'pad')], nodes_with_edges_only=True, ) pad_node = Node(graph, 'pad') with self.assertRaisesRegex(AssertionError, ".*must have 3 or 4 inputs.*"): Pad.infer(pad_node)
def test_two_inputs(self): graph = build_graph( self.node_attrs, self.edge_attrs + [('pads_begin', 'pad'), ('pads_end', 'pad')], nodes_with_edges_only=True, ) pad_node = Node(graph, 'pad') Pad.infer(pad_node) self.assertTrue( np.array_equal( Node(graph, 'data_out').shape, np.array([1, 3, 100 + 1 + 3, 200 + 2 + 4])))
def convert_fft_to_dft(self, graph: Graph, mx_fft: Node): mx_fft_name = mx_fft.soft_get('name', mx_fft.id) unsqueeze_node = create_op_with_const_inputs( graph, Unsqueeze, {1: int64_array([-1])}, {'name': mx_fft_name + '/Unsqueeze'}) rank_node = Rank(graph, {'name': mx_fft_name + '/Rank'}).create_node() mx_fft_connection = mx_fft.in_port(0).get_connection() mx_fft_connection.set_destination(unsqueeze_node.in_port(0)) mx_fft_connection.get_source().connect(rank_node.in_port(0)) add_node = create_op_with_const_inputs(graph, Add, {1: int64_array(1)}, {'name': mx_fft_name + '/Add'}, rank_node) broadcast_node1 = create_op_with_const_inputs( graph, Broadcast, {0: int64_array(0)}, {'name': mx_fft_name + '/Pad_broadcast'}) add_node.out_port(0).connect(broadcast_node1.in_port(1)) scatter_node = create_op_with_const_inputs( graph, ScatterUpdate, { 2: int64_array(1), 3: int64_array(0) }, {'name': mx_fft_name + '/ScatterUpdate'}) broadcast_node1.out_port(0).connect(scatter_node.in_port(0)) rank_node.out_port(0).connect(scatter_node.in_port(1)) pad_node = Pad(graph, { 'name': mx_fft_name + '/Pad', 'mode': 'constant' }).create_node([unsqueeze_node, broadcast_node1, scatter_node]) dft_node = create_op_with_const_inputs( graph, DFT, {1: int64_array([-1])}, { 'name': mx_fft_name + '/DFT', 'in_ports_count': 2 }, pad_node) sub_node = create_op_with_const_inputs(graph, Sub, {1: int64_array(1)}, {'name': mx_fft_name + '/Sub'}) rank_node.out_port(0).connect(sub_node.in_port(0)) broadcast_node2 = create_op_with_const_inputs( graph, Broadcast, {0: int64_array(0)}, {'name': mx_fft_name + '/Reshape_broadcast'}) sub_node.out_port(0).connect(broadcast_node2.in_port(1)) concat_node = create_op_with_const_inputs( graph, Concat, {1: int64_array([-1, 2])}, { 'name': mx_fft_name + '/New_shape', 'in_ports_count': 2, 'axis': 0 }, broadcast_node2) reshape_node = Reshape(graph, {}).create_node([dft_node, concat_node]) mx_fft.out_port(0).get_connection().set_source( reshape_node.out_port(0)) rename_nodes([(mx_fft, mx_fft_name + '/to_be_removed'), (reshape_node, mx_fft_name)])
def replace_op(self, graph: Graph, node: Node): # save the original node name to use it in the new Pad op instance original_name = node.soft_get('name', node.id) rename_node(node, original_name + '/TBR') new_pad = Pad(graph, { 'mode': node.soft_get('mode', None) }).create_node() rename_node(new_pad, original_name) node.in_port(0).get_connection().set_destination(new_pad.in_port(0)) if node.soft_get('mode') == 'constant': # the input with fill value is an optional third input in ONNX if not node.in_port(2).disconnected(): node.in_port(2).get_connection().set_destination( new_pad.in_port(3)) else: new_pad.in_port(3).connect( Const(graph, { 'value': 0.0 }).create_node().out_port(0)) # convert ONNX representation of the pads as [2 * N] to MO representation: [N] and [N] split_pads = create_op_with_const_inputs(graph, Split, {1: int64_array(0)}, {'num_splits': 2}) node.in_port(1).get_connection().set_destination(split_pads.in_port(0)) split_pads.out_port(0).connect(new_pad.in_port(1)) split_pads.out_port(1).connect(new_pad.in_port(2)) return [new_pad.id]
def find_and_replace_pattern(self, graph: Graph): for attr_pad in graph.get_op_nodes(op='AttributedPad'): # save the original node name to use it in the new Pad op instance original_name = attr_pad.soft_get('name', attr_pad.id) new_pad = Pad(graph, {'mode': attr_pad.soft_get('mode', None), }).create_node() rename_nodes([(attr_pad, original_name + '/to_be_removed'), (new_pad, original_name)]) attr_pad.in_port(0).get_connection().set_destination(new_pad.in_port(0)) new_pad.in_port(1).connect(Const(graph, {'value': attr_pad.pads[:, 0]}).create_node().out_port(0)) new_pad.in_port(2).connect(Const(graph, {'value': attr_pad.pads[:, 1]}).create_node().out_port(0)) if attr_pad.soft_get('mode') == 'constant': # create Constant node of proper data type (equal to the data type of the Pad first input) convert_pad_value = create_op_with_const_inputs(graph, ConvertLike, {0: attr_pad.fill_value}, {'name': original_name + '/pad_value_convert'}) convert_pad_value.in_port(1).connect(new_pad.in_port(0).get_source()) new_pad.in_port(3).connect(convert_pad_value.out_port(0)) attr_pad.out_port(0).get_connection().set_source(new_pad.out_port(0)) graph.remove_node(attr_pad.id)
def find_and_replace_pattern(self, graph: Graph): for tfpad in graph.get_op_nodes(op='TFPad'): # save the original node name to use it in the new Pad op instance original_name = tfpad.soft_get('name', tfpad.id) tfpad['name'] = original_name + '/to_be_removed' new_pad = Pad(graph, { 'mode': tfpad.soft_get('mode', None), }).create_node() rename_node(new_pad, original_name) tfpad.in_port(0).get_connection().set_destination( new_pad.in_port(0)) if tfpad.soft_get('mode') == 'constant': # the input with fill value is an optional third input in TF if not tfpad.in_port(2).disconnected(): tfpad.in_port(2).get_connection().set_destination( new_pad.in_port(3)) # convert TF representation of the pads as [N, 2] to MO representation: [N] and [N] transposed_pads = create_op_with_const_inputs( graph, Transpose, {1: int64_array([1, 0])}) tfpad.in_port(1).get_connection().set_destination( transposed_pads.in_port(0)) split_pads = create_op_with_const_inputs(graph, Split, {1: int64_array(0)}, {'num_splits': 2}) transposed_pads.out_port(0).connect(split_pads.in_port(0)) for port_ind in range(2): split_pads.add_output_port(port_ind, skip_if_exist=True) new_pad.in_port(port_ind + 1).connect( split_pads.out_port(port_ind)) new_pad.in_port(port_ind + 1).get_connection().insert_node( create_op_with_const_inputs(graph, Squeeze, {1: int64_array([0])})) tfpad.out_port(0).get_connection().set_source(new_pad.out_port(0)) graph.remove_node(tfpad.id)
def replace_op(self, graph: Graph, node: Node): # Note that PyTorch paddings are reversed pads_begin = node.module.pad[::2][::-1] pads_end = node.module.pad[1::2][::-1] pads_begin = Const(graph, { 'name': node.name + '/pads_begin', 'value': pads_begin }).create_node() pads_end = Const(graph, { 'name': node.name + '/pads_end', 'value': pads_end }).create_node() pad_value = Const(graph, { 'name': node.name + '/pad_value', 'value': 0.0 }).create_node() pad = Pad(graph, dict(name=node.name)).create_node( [node.in_node(0), pads_begin, pads_end, pad_value]) return [pad.id]
def find_and_replace_pattern(self, graph: Graph): for node in graph.get_op_nodes(op='SpaceToBatch') + graph.get_op_nodes( op='BatchToSpace'): node.add_input_port(3, skip_if_exist=True) # convert TF representation of the pads/crops as [N, 2] to IE representation: [N] and [N] transposed_pads = create_op_with_const_inputs( graph, Transpose, {1: int64_array([1, 0])}) node.in_port(2).get_connection().set_destination( transposed_pads.in_port(0)) split_pads = create_op_with_const_inputs(graph, Split, {1: int64_array(0)}, {'num_splits': 2}) transposed_pads.out_port(0).connect(split_pads.in_port(0)) for port_ind in range(2): node.in_port(port_ind + 2).connect( split_pads.out_port(port_ind)) node.in_port(port_ind + 2).get_connection().insert_node( create_op_with_const_inputs(graph, Squeeze, {1: int64_array([0])})) # add zeros/ones to related inputs to align it with data input in0_rank = Rank(graph, { 'name': node.name + '/rank_0' }).create_node() in1_shape = Shape(graph, { 'name': node.name + '/rank_1' }).create_node() diff_size = Sub(graph, { 'name': node.name + '/sub_0' }).create_node() diff = Sub(graph, {'name': node.name + '/sub_1'}).create_node() const_begin = Const(graph, { 'value': int64_array([1]) }).create_node() const_pad_val = Const(graph, { 'value': int64_array(1) }).create_node() block_shape = Pad(graph, { 'name': node.name + '/aligned_block_shape', 'mode': 'constant' }).create_node() # in case of SpaceToBatch begin = pads_begin, end = pads_end # in case of BatchToSpace begin = crops_begin, end = crops_end new_begin_name = '/aligned_pads_begin' new_end_name = '/aligned_pads_end' if node.type == 'BatchToSpace': new_begin_name = '/aligned_crops_begin' new_end_name = '/aligned_crops_end' begin = Pad(graph, { 'name': node.name + new_begin_name, 'mode': 'constant' }).create_node() end = Pad(graph, { 'name': node.name + new_end_name, 'mode': 'constant' }).create_node() in0_rank_1d = create_op_node_with_second_input( graph, Unsqueeze, int64_array([0]), {'name': node.name + '/1d_rank_of_0'}, in0_rank) node.in_port(0).get_source().connect(in0_rank.in_port(0)) node.in_port(1).get_source().connect(in1_shape.in_port(0)) in0_rank_1d.out_port(0).connect(diff_size.in_port(0)) in1_shape.out_port(0).connect(diff_size.in_port(1)) diff_size.out_port(0).connect(diff.in_port(0)) const_begin.out_port(0).connect(diff.in_port(1)) const_pad_val.out_port(0).connect(block_shape.in_port(3)) inputs_array = [block_shape, begin, end] for idx, input_to_node in enumerate(inputs_array): name_of_input_to_node = input_to_node.name node.in_port(idx + 1).get_connection().set_destination( input_to_node.in_port(0)) const_begin.out_port(0).connect(input_to_node.in_port(1)) diff.out_port(0).connect(input_to_node.in_port(2)) input_to_node.out_port(0).connect(node.in_port(idx + 1)) convert = Cast(graph, { 'name': name_of_input_to_node + '/i64', 'dst_type': np.int64 }).create_node() input_to_node.in_port(0).get_connection().insert_node(convert)