예제 #1
0
def parse_args(argv):
    """Parse and process arguments for evaluation"""
    parser = ArgumentParser(description='Accuracy evaluation tool', allow_abbrev=False)
    parser.add_argument(
        '-c',
        '--config',
        help='Path to a config file with model-specific parameters',
        required=True)
    parser.add_argument(
        '-m',
        '--compressed_model',
        help='Path to a compressed model (.xml)',
        required=False)
    parser.add_argument(
        '-ss',
        '--subset_size',
        help='Size of subset to make evaluation on',
        type=int,
        required=False)
    args = parser.parse_args(args=argv)

    config = Config.read_config(args.config)
    subset = range(args.subset_size) if args.subset_size else None
    path = None
    if args.compressed_model:
        model_xml_path = Path(args.compressed_model).resolve()
        model_bin_path = model_xml_path.with_suffix('.bin')
        path = [{'model': model_xml_path, 'weights': model_bin_path}]

    logger.info('Model: %s', model_xml_path)

    return config, subset, path
예제 #2
0
파일: run.py 프로젝트: mikhailk62/openvino
def app(argv):
    telemetry = start_session_telemetry()
    parser = get_common_argument_parser()
    args = parser.parse_args(args=argv)
    check_dependencies(args)
    if not args.config:
        _update_config_path(args)

    config = Config.read_config(args.config)
    config.configure_params(args.ac_config)
    config.update_from_args(args)

    if config.engine.type == 'simplified' and args.evaluate:
        raise Exception('Can not make evaluation in simplified mode')

    log_dir = _create_log_path(config)
    init_logger(level=args.log_level,
                file_name=os.path.join(log_dir, 'log.txt'),
                progress_bar=args.pbar)
    logger.info('Output log dir: {}'.format(log_dir))

    metrics = optimize(config)
    if metrics and logger.progress_bar_disabled:
        for name, value in metrics.items():
            logger.info('{: <27s}: {}'.format(name, value))
    end_session_telemetry(telemetry)
예제 #3
0
def test_algo_params_validation(algorithm_settings):
    tool_config_path = TOOL_CONFIG_PATH.joinpath(
        'mobilenet-v2-pytorch_single_dataset.json').as_posix()
    config = Config.read_config(tool_config_path)
    config['compression']['algorithms'][0] = algorithm_settings[1][0]
    config_error = algorithm_settings[1][1]

    with pytest.raises(RuntimeError, match=config_error):
        config.validate_algo_config()
예제 #4
0
def test_load_tool_config(config_name, argv):

    parser = get_common_argument_parser()
    argv = argv.split()
    argv[-1] = ENGINE_CONFIG_PATH.joinpath('mobilenet-ssd.json').as_posix()
    args = parser.parse_args(args=argv)
    tool_config_path = TOOL_CONFIG_PATH.joinpath(config_name).as_posix()
    config = Config.read_config(tool_config_path)
    config.configure_params()
    config.update_from_args(args)
    assert config.model.model == argv[5]
    assert config.model.weights == argv[3]
예제 #5
0
파일: config.py 프로젝트: SDxKeeper/dldt
def merge_configs(model_conf, engine_conf, algo_conf):
    config = Config()

    # mo config
    config.model = model_conf

    # ac config
    config.engine = engine_conf

    # algo config
    opt_config = algo_conf.pop('optimizer', None)
    if opt_config is not None:
        config.optimizer = opt_config

    config.compression = algo_conf
    config.add_log_dir(config.model.output_dir, config.model.output_dir)

    return config
예제 #6
0
def test_load_tool_config(config_name, tmp_path, models):
    tool_config_path = TOOL_CONFIG_PATH.joinpath(config_name).as_posix()
    config = Config.read_config(tool_config_path)
    config.configure_params()

    config.engine.log_dir = tmp_path.as_posix()
    config.engine.evaluate = True

    model_name, model_framework = TEST_MODEL
    model = models.get(model_name, model_framework, tmp_path)
    config.model.model = model.model_params.model
    config.model.weights = model.model_params.weights
    provide_dataset_path(config.engine)
    ConfigReader.convert_paths(config.engine)

    pipeline = create_pipeline(config.compression.algorithms, ACEngine(config.engine))

    model = load_model(config.model)
    assert not isinstance(model, int)
    assert pipeline.run(model)
예제 #7
0
    def compress_model():
        telemetry.value = set()
        tool_config_path = TELEMETRY_CONFIG_PATH.joinpath(
            config_name).as_posix()
        config = Config.read_config(tool_config_path)
        config.configure_params()

        config.engine.log_dir = tmp_path.as_posix()
        config.engine.evaluate = True

        model_name, model_framework = TEST_MODEL
        model = models.get(model_name, model_framework, tmp_path)
        config.model.model = model.model_params.model
        config.model.weights = model.model_params.weights

        provide_dataset_path(config.engine)
        ConfigReader.convert_paths(config.engine)

        pipeline = create_pipeline(config.compression.algorithms,
                                   ACEngine(config.engine), 'CLI')
        model = load_model(config.model)
        pipeline.run(model)

        assert set(telemetry.value) == set(expected[config_name])
예제 #8
0
파일: run.py 프로젝트: yury-intel/openvino
def app(argv):
    telemetry = start_session_telemetry()
    parser = get_common_argument_parser()
    args = parser.parse_args(args=argv)
    check_dependencies(args)
    if not args.config:
        _update_config_path(args)

    config = Config.read_config(args.config)

    if args.engine:
        config.engine[
            'type'] = args.engine if args.engine else 'accuracy_checker'
    if 'data_source' not in config.engine:
        if args.data_source is None and config.engine.type == 'data_free':
            args.data_source = 'pot_dataset'
        config.engine['data_source'] = args.data_source

    config.configure_params(args.ac_config)
    config.update_from_args(args)

    if config.engine.type != 'accuracy_checker' and args.evaluate:
        raise Exception(
            'Can not make evaluation in simplified or data_free mode')

    log_dir = _create_log_path(config)
    init_logger(level=args.log_level,
                file_name=os.path.join(log_dir, 'log.txt'),
                progress_bar=args.pbar)
    logger.info('Output log dir: {}'.format(log_dir))

    metrics = optimize(config)
    if metrics and logger.progress_bar_disabled:
        for name, value in metrics.items():
            logger.info('{: <27s}: {}'.format(name, value))
    end_session_telemetry(telemetry)
예제 #9
0
 def read_config(filename):
     tool_config_path = TOOL_CONFIG_PATH.joinpath(filename).as_posix()
     config = Config.read_config(tool_config_path)
     config.configure_params()
     return config['compression']['algorithms'][0]['params'][
         'target_device']