def without_ngraph(self, l, config=None): if config is None: config = tf.compat.v1.ConfigProto() openvino_tf_disable_deassign_clusters = os.environ.pop( 'OPENVINO_TF_DISABLE_DEASSIGN_CLUSTERS', None) openvino_tensorflow.disable() with tf.compat.v1.Session(config=config) as sess: retval = l(sess) if openvino_tf_disable_deassign_clusters is not None: os.environ['OPENVINO_TF_DISABLE_DEASSIGN_CLUSTERS'] = \ openvino_tf_disable_deassign_clusters return retval
if model_file == "": model = hub.load( "https://tfhub.dev/google/imagenet/inception_v3/classification/4") else: model = tf.saved_model.load(model_file) if not args.disable_ovtf: #Print list of available backends print('Available Backends:') backends_list = ovtf.list_backends() for backend in backends_list: print(backend) ovtf.set_backend(backend_name) else: ovtf.disable() #Load the labels cap = None images = [] if label_file: labels = load_labels(label_file) input_mode = get_input_mode(input_file) if input_mode == "video": cap = cv2.VideoCapture(input_file) elif input_mode == "camera": cap = cv2.VideoCapture(0) elif input_mode == 'image': images = [input_file] elif input_mode == 'directory': if not os.path.isdir(input_file):
def test_disable(self): openvino_tensorflow.disable() if not openvino_tensorflow.is_enabled() == 0: raise AssertionError