예제 #1
0
    def _visualize_model(self, img_dir):
        print("Sampling images from model...")

        batch_z = np.random.uniform(-1.0,
                                    1.0,
                                    size=[self.batch_size,
                                          self.z_dim]).astype(np.float32)
        correct_tag = np.zeros(
            [self.batch_size, self.eyes_dim + self.hair_dim], dtype=np.float32)
        correct_tag[:, 1] = 1.
        correct_tag[:-1] = 1.
        feed_dict = {
            self.z_vec: batch_z,
            self.eyes_vec: correct_tag[:, :11],
            self.hair_vec: correct_tag[:, 11:],
            self.train_phase: False
        }

        images = self.sess.run(self.gen_images, feed_dict=feed_dict)
        images = ops.unprocess_image(images, 127.5, 127.5).astype(np.uint8)
        shape = [4, self.batch_size // 4]

        print(images.shape)
        ops.save_imshow_grid(images, img_dir,
                             "generated_%d.png" % self.global_steps, shape)
예제 #2
0
    def save_test_img(self, feature, index):
        batch_z = np.random.uniform(-1.0,
                                    1.0,
                                    size=[self.batch_size,
                                          self.z_dim]).astype(np.float32)
        correct_tag = np.tile(feature, (self.batch_size, 1))

        feed_dict = {
            self.z_vec: batch_z,
            self.tag_vec: correct_tag,
            self.train_phase: False
        }
        images = self.sess.run(self.gen_images, feed_dict=feed_dict)
        images = ops.unprocess_image(images, 127.5, 127.5).astype(np.uint8)

        ops.save_test_image(images, index)
예제 #3
0
    def _visualize_model(self, img_dir):
        print("Sampling images from model...")

        batch_z = np.random.uniform(-1.0,
                                    1.0,
                                    size=[self.batch_size,
                                          self.z_dim]).astype(np.float32)
        correct_tag = np.load('test_embedding.npy')
        correct_tag = np.tile(correct_tag, (self.batch_size, 1))
        feed_dict = {
            self.z_vec: batch_z,
            self.tag_vec: correct_tag,
            self.train_phase: False
        }

        images = self.sess.run(self.gen_images, feed_dict=feed_dict)
        images = ops.unprocess_image(images, 127.5, 127.5).astype(np.uint8)
        shape = [4, self.batch_size // 4]

        print(images.shape)
        ops.save_imshow_grid(images, img_dir,
                             "generated_%d.png" % self.global_steps, shape)