예제 #1
0
def test_verbose():
    data = load_breast_cancer()
    variable_names = data.feature_names
    df = pd.DataFrame(data.data, columns=variable_names)
    df["target"] = data.target

    binning_process = BinningProcess(variable_names)
    estimator = LogisticRegression()
    scorecard = Scorecard(target="target", binning_process=binning_process,
                          estimator=estimator, verbose=True)

    with open("tests/test_scorecard_verbose.txt", "w") as f:
        with redirect_stdout(f):
            scorecard.fit(df)
예제 #2
0
def test_scaling_method_params_continuous_pdo_odds():
    data = load_boston()
    variable_names = data.feature_names
    df = pd.DataFrame(data.data, columns=variable_names)
    df["target"] = data.target

    with raises(ValueError):
        estimator = LinearRegression()
        binning_process = BinningProcess(variable_names)

        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, scaling_method="pdo_odds",
                              scaling_method_params={})
        scorecard.fit(df)
예제 #3
0
def test_scaling_params():
    data = load_breast_cancer()

    variable_names = data.feature_names
    df = pd.DataFrame(data.data, columns=variable_names)
    df["target"] = data.target

    binning_process = BinningProcess(variable_names)
    estimator = LogisticRegression()

    with raises(ValueError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, scaling_method="pdo_odds",
                              scaling_method_params={"pdo": 20})
        scorecard.fit(df)

    with raises(ValueError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, scaling_method="pdo_odds",
                              scaling_method_params={"pdo": 20, "odds": -2,
                                                     "scorecard_points": -22})
        scorecard.fit(df)

    with raises(ValueError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, scaling_method="min_max",
                              scaling_method_params={"min": "a", "max": 600})
        scorecard.fit(df)

    with raises(ValueError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, scaling_method="min_max",
                              scaling_method_params={"min": 900, "max": 600})
        scorecard.fit(df)
def test_input():
    data = load_breast_cancer()
    variable_names = data.feature_names
    X = pd.DataFrame(data.data, columns=variable_names)
    y = data.target
    y[0] = 4

    binning_process = BinningProcess(variable_names)
    estimator = LogisticRegression()

    with raises(ValueError):
        scorecard = Scorecard(binning_process=binning_process,
                              estimator=estimator)
        scorecard.fit(X, y)
예제 #5
0
def test_input():
    data = load_breast_cancer()
    variable_names = data.feature_names
    df = pd.DataFrame(data.data, columns=variable_names)
    target = data.target
    target[0] = 4
    df["target"] = target

    binning_process = BinningProcess(variable_names)
    estimator = LogisticRegression()

    with raises(ValueError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator)
        scorecard.fit(df)
def test_estimator_not_coef():
    from sklearn.ensemble import RandomForestClassifier

    data = load_breast_cancer()
    variable_names = data.feature_names
    X = pd.DataFrame(data.data, columns=variable_names)
    y = data.target

    binning_process = BinningProcess(variable_names)
    estimator = RandomForestClassifier()

    scorecard = Scorecard(binning_process=binning_process, estimator=estimator)

    with raises(RuntimeError):
        scorecard.fit(X, y)
예제 #7
0
def buildScoreCard(df, features, labelCol):
    binning_process = BinningProcess(features)
    estimator = HuberRegressor(max_iter=200)
    scorecard = Scorecard(binning_process=binning_process, target=labelCol,
                          estimator=estimator, scaling_method=None,
                          scaling_method_params={"min": 0, "max": 100},
                          reverse_scorecard=True)
    scorecard.verbose = True
    scorecard.fit(df, check_input=False)
    scorecard.information(print_level=2)
    print(scorecard.table(style="summary"))
    score = scorecard.score(df)
    y_pred = scorecard.predict(df)
    plt.scatter(score, df[labelCol], alpha=0.01, label="Average profit")
    plt.plot(score, y_pred, label="Huber regression", linewidth=2, color="orange")
    plt.ylabel("Average profit value (unit=100,000)")
    plt.xlabel("Score")
    plt.legend()
    plt.show()
def test_information():
    data = load_breast_cancer()
    variable_names = data.feature_names
    X = pd.DataFrame(data.data, columns=variable_names)
    y = data.target

    binning_process = BinningProcess(variable_names)
    estimator = LogisticRegression()
    scorecard = Scorecard(binning_process=binning_process, estimator=estimator)

    with raises(NotFittedError):
        scorecard.information()

    scorecard.fit(X, y)

    with raises(ValueError):
        scorecard.information(print_level=-1)

    with open("tests/test_scorecard_information.txt", "w") as f:
        with redirect_stdout(f):
            scorecard.information(print_level=0)
            scorecard.information(print_level=1)
            scorecard.information(print_level=2)
예제 #9
0
def test_predict_score():
    data = load_breast_cancer()
    variable_names = data.feature_names
    df = pd.DataFrame(data.data, columns=variable_names)
    df["target"] = data.target

    binning_process = BinningProcess(variable_names)
    estimator = LogisticRegression()
    scaling_method_params = {"min": 300.12, "max": 850.66}

    scorecard = Scorecard(target="target", binning_process=binning_process,
                          estimator=estimator, scaling_method="min_max",
                          scaling_method_params=scaling_method_params)

    with raises(NotFittedError):
        pred = scorecard.predict(df)

    with raises(NotFittedError):
        pred_proba = scorecard.predict_proba(df)

    with raises(NotFittedError):
        score = scorecard.score(df)

    scorecard.fit(df)
    pred = scorecard.predict(df)
    pred_proba = scorecard.predict_proba(df)
    score = scorecard.score(df)

    assert pred[:5] == approx([0, 0, 0, 0, 0])

    assert pred_proba[:5, 1] == approx(
        [1.15260206e-06, 9.79035720e-06, 7.52481206e-08, 1.12438599e-03,
         9.83145644e-06], rel=1e-6)

    assert score[:5] == approx([652.16590046, 638.52659074, 669.56413105,
                                608.27744027, 638.49988325], rel=1e-6)
예제 #10
0
def test_params():
    data = load_breast_cancer()
    variable_names = data.feature_names
    df = pd.DataFrame(data.data, columns=variable_names)
    df["target"] = data.target

    binning_process = BinningProcess(variable_names)
    estimator = LogisticRegression()

    with raises(TypeError):
        scorecard = Scorecard(target=1, binning_process=binning_process,
                              estimator=estimator)
        scorecard.fit(df)

    with raises(TypeError):
        scorecard = Scorecard(target="target", binning_process=estimator,
                              estimator=estimator)
        scorecard.fit(df)

    with raises(TypeError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=binning_process)
        scorecard.fit(df)

    with raises(ValueError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, scaling_method="new_method",
                              scaling_method_params=dict())
        scorecard.fit(df)

    with raises(ValueError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, scaling_method="min_max",
                              scaling_method_params=None)
        scorecard.fit(df)

    with raises(TypeError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, scaling_method="min_max",
                              scaling_method_params=[])
        scorecard.fit(df)

    with raises(TypeError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, intercept_based=1)
        scorecard.fit(df)

    with raises(TypeError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, reverse_scorecard=1)
        scorecard.fit(df)

    with raises(TypeError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, rounding=1)
        scorecard.fit(df)

    with raises(TypeError):
        scorecard = Scorecard(target="target", binning_process=binning_process,
                              estimator=estimator, verbose=1)
        scorecard.fit(df)