def main(argv): del argv # Create the task environment. test_w = [float(x) for x in FLAGS.test_w] env_config = configs.get_fig5_task_config(test_w) env = scavenger.Scavenger(**env_config) env = environment_wrappers.EnvironmentWithLogging(env) # Create the flat agent. agent = dqn_agent.Agent(obs_spec=env.observation_spec(), action_spec=env.action_spec(), network_kwargs=dict( output_sizes=(64, 128), activate_final=True, ), epsilon=0.1, additional_discount=0.9, batch_size=10, optimizer_name="AdamOptimizer", optimizer_kwargs=dict(learning_rate=3e-4, )) _, ema_returns = experiment.run(env, agent, num_episodes=FLAGS.num_episodes, report_every=FLAGS.report_every) if FLAGS.output_path: experiment.write_returns_to_file(FLAGS.output_path, ema_returns)
def main(argv): del argv # Pretrain the keyboard and save a checkpoint. if FLAGS.keyboard_path: keyboard_path = FLAGS.keyboard_path else: with tf.Graph().as_default(): export_path = "/tmp/option_keyboard/keyboard" _ = keyboard_utils.create_and_train_keyboard( num_episodes=FLAGS.num_pretrain_episodes, export_path=export_path) keyboard_path = os.path.join(export_path, "tfhub") # Load the keyboard. keyboard = smart_module.SmartModuleImport(hub.Module(keyboard_path)) # Create the task environment. base_env_config = configs.get_task_config() base_env = scavenger.Scavenger(**base_env_config) base_env = environment_wrappers.EnvironmentWithLogging(base_env) # Wrap the task environment with the keyboard. additional_discount = 0.9 env = environment_wrappers.EnvironmentWithKeyboard( env=base_env, keyboard=keyboard, keyboard_ckpt_path=None, n_actions_per_dim=3, additional_discount=additional_discount, call_and_return=False) # Create the player agent. agent = dqn_agent.Agent(obs_spec=env.observation_spec(), action_spec=env.action_spec(), network_kwargs=dict( output_sizes=(64, 128), activate_final=True, ), epsilon=0.1, additional_discount=additional_discount, batch_size=10, optimizer_name="AdamOptimizer", optimizer_kwargs=dict(learning_rate=3e-4, )) _, ema_returns = experiment.run(env, agent, num_episodes=FLAGS.num_episodes, report_every=FLAGS.report_every) if FLAGS.output_path: experiment.write_returns_to_file(FLAGS.output_path, ema_returns)
def main(argv): del argv # Create the task environment. env_config = configs.get_fig4_task_config() env = scavenger.Scavenger(**env_config) env = environment_wrappers.EnvironmentWithLogging(env) # Create the flat agent. agent = dqn_agent.Agent(obs_spec=env.observation_spec(), action_spec=env.action_spec(), network_kwargs=dict( output_sizes=(64, 128), activate_final=True, ), epsilon=0.1, additional_discount=0.9, batch_size=10, optimizer_name="AdamOptimizer", optimizer_kwargs=dict(learning_rate=3e-4, )) experiment.run(env, agent, num_episodes=FLAGS.num_episodes)
def main(argv): del argv # Pretrain the keyboard and save a checkpoint. pretrain_agent = _train_keyboard(num_episodes=FLAGS.num_pretrain_episodes) keyboard_ckpt_path = "/tmp/option_keyboard/keyboard.ckpt" pretrain_agent.export(keyboard_ckpt_path) # Create the task environment. base_env_config = configs.get_task_config() base_env = scavenger.Scavenger(**base_env_config) base_env = environment_wrappers.EnvironmentWithLogging(base_env) # Wrap the task environment with the keyboard. additional_discount = 0.9 env = environment_wrappers.EnvironmentWithKeyboard( env=base_env, keyboard=pretrain_agent.keyboard, keyboard_ckpt_path=keyboard_ckpt_path, n_actions_per_dim=3, additional_discount=additional_discount, call_and_return=True) # Create the player agent. agent = dqn_agent.Agent(obs_spec=env.observation_spec(), action_spec=env.action_spec(), network_kwargs=dict( output_sizes=(64, 128), activate_final=True, ), epsilon=0.1, additional_discount=additional_discount, batch_size=10, optimizer_name="AdamOptimizer", optimizer_kwargs=dict(learning_rate=3e-4, )) experiment.run(env, agent, num_episodes=FLAGS.num_episodes)