opt.is_clip = False opt.CR = 0 if not opt.is_clip else 1 opt.is_regu_PAPR = False opt.is_regu_sigma = False ############################################################################################################## if not opt.is_clip: opt.CR = 0 ######################################## OFDM setting ########################################### size_after_compress = (opt.size // (opt.n_downsample**2))**2 * (opt.C_channel // 2) opt.N = opt.batchSize # Batch size opt.P = 1 # Number of symbols opt.M = 64 # Number of subcarriers per symbol opt.K = 16 # Length of CP opt.L = 8 # Number of paths opt.decay = 4 opt.S = size_after_compress // opt.M # Number of packets opt.is_cfo = False opt.is_trick = True opt.is_cfo_random = False opt.max_ang = 1.7 opt.ang = 1.7 if opt.CE not in ['LS', 'MMSE', 'TRUE']: raise Exception("Channel estimation method not implemented")
# Display setting opt.checkpoints_dir = './Checkpoints/'+ opt.dataset_mode + '_' + opt.channel opt.name = opt.gan_mode + '_C' + str(opt.C_channel) + channel_name output_path = './Images/' + opt.dataset_mode + '_' + opt.channel + '/' + opt.name # Choose the neural network model opt.model = 'StoGAN' opt.num_test = 2000 opt.how_many_channel = 5 opt.N = opt.how_many_channel model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers model.eval() if os.path.exists(output_path) == False: os.makedirs(output_path) else: shutil.rmtree(output_path) os.makedirs(output_path) PSNR_list = [] SSIM_list = [] for i, data in enumerate(dataset):