def plot_soutenance(): """ Plot des PDFs des 4 attributs définis par Clément pour le ppt de la soutenance. """ from options import MultiOptions opt = MultiOptions() opt.opdict['channels'] = ['Z'] #opt.opdict['feat_train'] = 'clement_train.csv' #opt.opdict['feat_test'] = 'clement_test.csv' opt.opdict['feat_list'] = ['AsDec','Dur','Ene','KRapp'] #opt.opdict['feat_log'] = ['AsDec','Dur','Ene','KRapp'] opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() gauss = opt.gaussians fig = plt.figure(figsize=(12,2.5)) fig.set_facecolor('white') for ifeat,feat in enumerate(sorted(gauss)): ax = fig.add_subplot(1,4,ifeat+1) ax.plot(gauss[feat]['vec'],gauss[feat]['VT'],ls='-',c='b',lw=2.) ax.plot(gauss[feat]['vec'],gauss[feat]['EB'],ls='-',c='r',lw=2.) ax.set_title(feat) ax.xaxis.set_ticks_position('bottom') ax.xaxis.set_ticklabels('') ax.yaxis.set_ticks_position('left') ax.yaxis.set_ticklabels('') if ifeat == 0: ax.legend(['VT','EB'],loc=1,prop={'size':10}) plt.savefig('/home/nadege/Dropbox/Soutenance/pdfs.png') plt.show()
def plot_soutenance(): """ Plot des PDFs des 4 attributs définis par Clément pour le ppt de la soutenance. """ from options import MultiOptions opt = MultiOptions() opt.opdict['channels'] = ['Z'] #opt.opdict['feat_train'] = 'clement_train.csv' #opt.opdict['feat_test'] = 'clement_test.csv' opt.opdict['feat_list'] = ['AsDec', 'Dur', 'Ene', 'KRapp'] #opt.opdict['feat_log'] = ['AsDec','Dur','Ene','KRapp'] opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() gauss = opt.gaussians fig = plt.figure(figsize=(12, 2.5)) fig.set_facecolor('white') for ifeat, feat in enumerate(sorted(gauss)): ax = fig.add_subplot(1, 4, ifeat + 1) ax.plot(gauss[feat]['vec'], gauss[feat]['VT'], ls='-', c='b', lw=2.) ax.plot(gauss[feat]['vec'], gauss[feat]['EB'], ls='-', c='r', lw=2.) ax.set_title(feat) ax.xaxis.set_ticks_position('bottom') ax.xaxis.set_ticklabels('') ax.yaxis.set_ticks_position('left') ax.yaxis.set_ticklabels('') if ifeat == 0: ax.legend(['VT', 'EB'], loc=1, prop={'size': 10}) plt.savefig('/home/nadege/Dropbox/Soutenance/pdfs.png') plt.show()
def compare_clement(): """ Comparaison des attributs de Clément avec ceux que j'ai recalculés. """ from options import MultiOptions opt = MultiOptions() opt.opdict['channels'] = ['Z'] # Mes calculs opt.opdict['feat_list'] = ['Dur', 'AsDec', 'RappMaxMean', 'Kurto', 'KRapp'] opt.opdict['feat_log'] = ['AsDec', 'RappMaxMean', 'Kurto'] #opt.opdict['feat_list'] = ['Ene'] #opt.opdict['feat_log'] = ['Ene'] opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.x.columns = opt.opdict['feat_list'] opt.compute_pdfs() my_gauss = opt.gaussians if 'Kurto' in opt.opdict['feat_list'] and 'RappMaxMean' in opt.opdict[ 'feat_list']: fig = plt.figure() fig.set_facecolor('white') plt.plot(np.log(opt.x.Kurto), np.log(opt.x.RappMaxMean), 'ko') plt.xlabel('Kurto') plt.ylabel('RappMaxMean') plt.show() # Les calculs de Clément #opt.opdict['feat_list'] = ['Dur','AsDec','RappMaxMean','Kurto','Ene'] opt.opdict['feat_log'] = [] opt.opdict['feat_train'] = 'clement_train.csv' opt.opdict['feat_test'] = 'clement_test.csv' opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() # Trait plein --> Clément # Trait tireté --> moi opt.plot_superposed_pdfs(my_gauss, save=False)
def compare_clement(): """ Comparaison des attributs de Clément avec ceux que j'ai recalculés. """ from options import MultiOptions opt = MultiOptions() opt.opdict['channels'] = ['Z'] # Mes calculs opt.opdict['feat_list'] = ['Dur','AsDec','RappMaxMean','Kurto','KRapp'] opt.opdict['feat_log'] = ['AsDec','RappMaxMean','Kurto'] #opt.opdict['feat_list'] = ['Ene'] #opt.opdict['feat_log'] = ['Ene'] opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.x.columns = opt.opdict['feat_list'] opt.compute_pdfs() my_gauss = opt.gaussians if 'Kurto' in opt.opdict['feat_list'] and 'RappMaxMean' in opt.opdict['feat_list']: fig = plt.figure() fig.set_facecolor('white') plt.plot(np.log(opt.x.Kurto),np.log(opt.x.RappMaxMean),'ko') plt.xlabel('Kurto') plt.ylabel('RappMaxMean') plt.show() # Les calculs de Clément #opt.opdict['feat_list'] = ['Dur','AsDec','RappMaxMean','Kurto','Ene'] opt.opdict['feat_log'] = [] opt.opdict['feat_train'] = 'clement_train.csv' opt.opdict['feat_test'] = 'clement_test.csv' opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() # Trait plein --> Clément # Trait tireté --> moi opt.plot_superposed_pdfs(my_gauss,save=False)
def compare_lissage(): """ Comparaison des kurtosis avec deux lissages différents. """ plot_envelopes() from options import MultiOptions opt = MultiOptions() opt.opdict['channels'] = ['Z'] # Lissage sur des fenêtres de 0.5 s opt.opdict['feat_list'] = ['Kurto'] opt.opdict['feat_log'] = ['Kurto'] opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.x.columns = opt.opdict['feat_list'] opt.compute_pdfs() gauss_stand = opt.gaussians # Lissage sur des fenêtres de 1 s opt.opdict['feat_train'] = '0610_Piton_trainset.csv' opt.opdict['feat_test'] = '0610_Piton_testset.csv' opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() gauss_1s = opt.gaussians # Lissage sur des fenêtres de 5 s opt.opdict['feat_train'] = '1809_Piton_trainset.csv' opt.opdict['feat_test'] = '1809_Piton_testset.csv' opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() gauss_5s = opt.gaussians # Lissage sur des fenêtres de 10 s opt.opdict['feat_train'] = '0510_Piton_trainset.csv' opt.opdict['feat_test'] = '0510_Piton_testset.csv' opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() gauss_10s = opt.gaussians ### PLOT OF SUPERPOSED PDFs ### fig = plt.figure(figsize=(12,2.5)) fig.set_facecolor('white') for feat in sorted(opt.gaussians): maxi = int(np.max([gauss_stand[feat]['vec'],gauss_1s[feat]['vec'],gauss_5s[feat]['vec'],gauss_10s[feat]['vec']])) ax1 = fig.add_subplot(141) ax1.plot(gauss_stand[feat]['vec'],gauss_stand[feat]['VT'],ls='-',c='b',lw=2.,label='VT') ax1.plot(gauss_stand[feat]['vec'],gauss_stand[feat]['EB'],ls='-',c='r',lw=2.,label='EB') ax1.set_xlim([0,maxi]) ax1.set_xlabel(feat) ax1.set_title('0.5 s') ax1.legend(prop={'size':10}) ax2 = fig.add_subplot(142) ax2.plot(gauss_1s[feat]['vec'],gauss_1s[feat]['VT'],ls='-',c='b',lw=2.) ax2.plot(gauss_1s[feat]['vec'],gauss_1s[feat]['EB'],ls='-',c='r',lw=2.) ax2.set_xlim([0,maxi]) ax2.set_xlabel(feat) ax2.set_title('1 s') ax2.set_yticklabels('') ax3 = fig.add_subplot(143) ax3.plot(gauss_5s[feat]['vec'],gauss_5s[feat]['VT'],ls='-',c='b',lw=2.) ax3.plot(gauss_5s[feat]['vec'],gauss_5s[feat]['EB'],ls='-',c='r',lw=2.) ax3.set_xlim([0,maxi]) ax3.set_xlabel(feat) ax3.set_title('5 s') ax3.set_yticklabels('') ax4 = fig.add_subplot(144) ax4.plot(gauss_10s[feat]['vec'],gauss_10s[feat]['VT'],ls='-',c='b',lw=2.) ax4.plot(gauss_10s[feat]['vec'],gauss_10s[feat]['EB'],ls='-',c='r',lw=2.) ax4.set_xlim([0,maxi]) ax4.set_xlabel(feat) ax4.set_title('10 s') ax4.set_yticklabels('') #plt.savefig('%s/features/comp_%s.png'%(opt.opdict['outdir'],feat)) plt.show()
def compare_lissage(): """ Comparaison des kurtosis avec deux lissages différents. """ plot_envelopes() from options import MultiOptions opt = MultiOptions() opt.opdict['channels'] = ['Z'] # Lissage sur des fenêtres de 0.5 s opt.opdict['feat_list'] = ['Kurto'] opt.opdict['feat_log'] = ['Kurto'] opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.x.columns = opt.opdict['feat_list'] opt.compute_pdfs() gauss_stand = opt.gaussians # Lissage sur des fenêtres de 1 s opt.opdict['feat_train'] = '0610_Piton_trainset.csv' opt.opdict['feat_test'] = '0610_Piton_testset.csv' opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() gauss_1s = opt.gaussians # Lissage sur des fenêtres de 5 s opt.opdict['feat_train'] = '1809_Piton_trainset.csv' opt.opdict['feat_test'] = '1809_Piton_testset.csv' opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() gauss_5s = opt.gaussians # Lissage sur des fenêtres de 10 s opt.opdict['feat_train'] = '0510_Piton_trainset.csv' opt.opdict['feat_test'] = '0510_Piton_testset.csv' opt.do_tri() opt.x = opt.xs[0] opt.y = opt.ys[0] opt.compute_pdfs() gauss_10s = opt.gaussians ### PLOT OF SUPERPOSED PDFs ### fig = plt.figure(figsize=(12, 2.5)) fig.set_facecolor('white') for feat in sorted(opt.gaussians): maxi = int( np.max([ gauss_stand[feat]['vec'], gauss_1s[feat]['vec'], gauss_5s[feat]['vec'], gauss_10s[feat]['vec'] ])) ax1 = fig.add_subplot(141) ax1.plot(gauss_stand[feat]['vec'], gauss_stand[feat]['VT'], ls='-', c='b', lw=2., label='VT') ax1.plot(gauss_stand[feat]['vec'], gauss_stand[feat]['EB'], ls='-', c='r', lw=2., label='EB') ax1.set_xlim([0, maxi]) ax1.set_xlabel(feat) ax1.set_title('0.5 s') ax1.legend(prop={'size': 10}) ax2 = fig.add_subplot(142) ax2.plot(gauss_1s[feat]['vec'], gauss_1s[feat]['VT'], ls='-', c='b', lw=2.) ax2.plot(gauss_1s[feat]['vec'], gauss_1s[feat]['EB'], ls='-', c='r', lw=2.) ax2.set_xlim([0, maxi]) ax2.set_xlabel(feat) ax2.set_title('1 s') ax2.set_yticklabels('') ax3 = fig.add_subplot(143) ax3.plot(gauss_5s[feat]['vec'], gauss_5s[feat]['VT'], ls='-', c='b', lw=2.) ax3.plot(gauss_5s[feat]['vec'], gauss_5s[feat]['EB'], ls='-', c='r', lw=2.) ax3.set_xlim([0, maxi]) ax3.set_xlabel(feat) ax3.set_title('5 s') ax3.set_yticklabels('') ax4 = fig.add_subplot(144) ax4.plot(gauss_10s[feat]['vec'], gauss_10s[feat]['VT'], ls='-', c='b', lw=2.) ax4.plot(gauss_10s[feat]['vec'], gauss_10s[feat]['EB'], ls='-', c='r', lw=2.) ax4.set_xlim([0, maxi]) ax4.set_xlabel(feat) ax4.set_title('10 s') ax4.set_yticklabels('') #plt.savefig('%s/features/comp_%s.png'%(opt.opdict['outdir'],feat)) plt.show()