def main(): ap = argparse.ArgumentParser() ap.add_argument('--arch', required=True, nargs='+', type=int) ap.add_argument('--lr', required=False, type=int, default=.01) ap.add_argument('--epochs', required=False, type=int, default=100) ap.add_argument('--iters', required=True, type=int) ap.add_argument('--trials', required=True, type=int) ap.add_argument('--env', required=True) ap.add_argument('--t', required=True, type=int) args = vars(ap.parse_args()) opt = Options() opt.envname = args['env'] opt.trials = args['trials'] opt.iters = args['iters'] opt.epochs = args['epochs'] opt.lr = args['lr'] opt.arch = args['arch'] opt.t = args['t'] opt.filename = '/Users/JonathanLee/experts/' + opt.envname + '.pkl' opt.env = gym.envs.make(opt.envname).env opt.sim = gym.envs.make(opt.envname).env opt.pi = load_policy.load_policy(opt.filename) opt.sess = tf.Session() opt.sup = NetSupervisor(opt.pi, opt.sess) run_trial(opt)
def main(): # ------------------------------------------------ Training Phase ------------------------------------------------ # image_files = random.sample(glob.glob('E:\\work\\pedestrian_crop_python_process\\Pedestrain_cropDB\\train\\0\\*.bmp'), 10) # image_files = random.sample(glob.glob('data/0.normal/*.bmp'), 10) # data_in = data_read(image_files) opt = Options().parse() opt.iwidth = map_x_size opt.iheight = map_y_size #---new--- depth for size ctinit = map_x_size while ctinit > 4: ctinit = ctinit / 2 opt.ctinit = int(ctinit) #---new--- opt.batchsize = 64 opt.epochs = 1000 opt.mask = 0 # 1: masking for simulation map opt.time = datetime.now() train_dataloader = load_data( './data/unsupervised/train/') # path to trainset result_path = './results/{0}/'.format( opt.time) # reconstructions durnig the training if not os.path.isdir(result_path): os.mkdir(result_path) # dataloader = load_data(opt, data_in) model = AAE_basic(opt, train_dataloader) model.train()