예제 #1
0
def fold_request(cv_opts):
    """Computes k-fold cross-validation folds.
    Emulates :func:`optunity.cross_validated`."""
    try:
        num_instances = cv_opts['num_instances']
    except (KeyError, ValueError):
        msg = {'error_msg': 'number of instances num_instances must be set.'}
        comm.send(comm.json_encode(msg))
        print(startup_msg, file=sys.stderr)
        exit(1)

    num_folds = cv_opts.get('num_folds', 10)
    strata = cv_opts.get('strata', None)
    clusters = cv_opts.get('clusters', None)
    num_iter = cv_opts.get('num_iter', 1)

    folds = [
        optunity.generate_folds(num_instances,
                                num_folds=num_folds,
                                strata=strata,
                                clusters=clusters) for _ in range(num_iter)
    ]

    msg = {'folds': folds}
    comm.send(comm.json_encode(msg))
    exit(0)
예제 #2
0
def fold_request(cv_opts):
    """Computes k-fold cross-validation folds.
    Emulates :func:`optunity.cross_validated`."""
    try:
        num_instances = cv_opts['num_instances']
    except (KeyError, ValueError):
        msg = {'error_msg': 'number of instances num_instances must be set.'}
        comm.send(comm.json_encode(msg))
        print(startup_msg, file=sys.stderr)
        exit(1)

    num_folds = cv_opts.get('num_folds', 10)
    strata = cv_opts.get('strata', None)
    clusters = cv_opts.get('clusters', None)
    num_iter = cv_opts.get('num_iter', 1)

    folds = [optunity.generate_folds(num_instances, num_folds=num_folds,
                                     strata=strata, clusters=clusters)
             for _ in range(num_iter)]

    msg = {'folds': folds}
    comm.send(comm.json_encode(msg))
    exit(0)
예제 #3
0
    tuned_model = sklearn.svm.SVR(**optimal_pars).fit(x_train, y_train)
    predictions = tuned_model.predict(x_test)
    return optunity.metrics.mse(y_test, predictions)

# decorate with cross-validation
compute_mse_tuned = outer_cv(compute_mse_tuned)

t = time.time()
mse_tuned = compute_mse_tuned()
diff = time.time() - t
print('Nested cv mean squared error of tuned model: ' + str(mse_tuned))
print('Tuning time (approx): ' + str(diff/3) + ' seconds') # we tuned 3 times


# generate folds, so we know the indices of test instances at any point
folds = optunity.generate_folds(data.shape[0], num_folds=3)

# create another cross-validation decorator
# we will compare nested cross-validation results for both tuned and untuned models
# to do this, we will perform  nested cross-validation but aggregate results using the identity function
# this will yield the predictions
outer_cv = optunity.cross_validated(x=data, y=targets, num_folds=3, folds=[folds],
                                    aggregator=optunity.cross_validation.identity)

def svr_untuned_predictions(x_train, y_train, x_test, y_test):
    model = sklearn.svm.SVR().fit(x_train, y_train)
    return model.predict(x_test).tolist()


def svr_tuned_predictions(x_train, y_train, x_test, y_test):
    @optunity.cross_validated(x=x_train, y=y_train, num_iter=2, num_folds=5)
예제 #4
0
파일: svr.py 프로젝트: youtang1993/optunity
    predictions = tuned_model.predict(x_test)
    return optunity.metrics.mse(y_test, predictions)


# decorate with cross-validation
compute_mse_tuned = outer_cv(compute_mse_tuned)

t = time.time()
mse_tuned = compute_mse_tuned()
diff = time.time() - t
print('Nested cv mean squared error of tuned model: ' + str(mse_tuned))
print('Tuning time (approx): ' + str(diff / 3) +
      ' seconds')  # we tuned 3 times

# generate folds, so we know the indices of test instances at any point
folds = optunity.generate_folds(data.shape[0], num_folds=3)

# create another cross-validation decorator
# we will compare nested cross-validation results for both tuned and untuned models
# to do this, we will perform  nested cross-validation but aggregate results using the identity function
# this will yield the predictions
outer_cv = optunity.cross_validated(
    x=data,
    y=targets,
    num_folds=3,
    folds=[folds],
    aggregator=optunity.cross_validation.identity)


def svr_untuned_predictions(x_train, y_train, x_test, y_test):
    model = sklearn.svm.SVR().fit(x_train, y_train)